Отличие числа хромосом человека и обезьяны. Э.П

Изучение обезьян позволяет ученым делать открытия, имеющие значение для всего мира существ на планете. Специалистами изучаются не только отдельные поведенческие признаки. Генетики тщательно углубляются в вопросы о хромосомной структуре животных. Вопрос о том, сколько хромосом у обезьян по отношению к другим животным, имеет первостепенное значение для исследователей.

Сколько хромосом у обезьяны

Наследственный материал, входящий в состав ядра эукаритической клетки организма называется хромосомой. Нити хромосом образуют ДНК. Функции молекулы включают в себя сохранение и передачу информации об определенных свойствах, присущих каждому виду (кариотипу) организма. Шимпанзе имеет самое близкое строение к человеческому ДНК. У этого вида обезьяны 48 хромосом или 24 пары клеток. У человека для сравнения 46 хромосом. Некоторые исследователи утверждают о том, что геном шимпанзе совпадает на 97,4 % с человеческим.

Другие приматы имеют свою структуру кариотипа (количество хромосом):

  1. Макаки – 42.
  2. Гиббоны – 44.
  3. Мартышки – 55-71.
  4. Ревуны – 42-50.

По одной из версий, которая поддерживает происхождение людей от обезьян, хромосомные изменения случились в процессе мутации около 6 млн. лет назад. Как утверждают исследователи, под воздействием внешних факторов две хромосомы слились в одну и образовались два разных кариотипа, человека и шимпанзе. Человекообразные обезьяны и человек объединены в семейство гоминид.

Наименьшие генетические вариации присущи именно человеку. Поэтому хромосомные изменения и кровосмешение часто бывают проблемными. Генетическая схожесть двух не родственных людей больше, чем у шимпанзе из одной семьи. Поэтому библейское происхождение людей от Адама и Евы в некотором роде имеет под собой основание. Генетическое разнообразие людей очень мало, несмотря на различия во внешних признаках: цвете кожи, глаз, росте, телосложении.

На сегодняшний момент специалисты опровергают схожесть генома человека и шимпанзе, и как следствие, версию об общем предке. Интересно, что ДНК человека и банана совпадает на 50 %. Но это не говорит о том, что наш организм и ДНК банана имел когда-то общего родственника. Например, ДНК человека и мыши совпадает на 98 %, а с собакой на 95%. С другой стороны, именно генетическая схожесть позволяет человечеству открывать новые лекарства, творящие революцию в фармакологии. С помощью опытного изучения создаются все более мощные средства против тяжелых заболеваний.

В настоящее время проводится многочисленные исследования в ДНК шимпанзе и человека. Противники теории о совпадении ДНК утверждают, что на самом деле отличия между геномами около 19%. То есть в действительности схожесть составляет не более 81%, а по некоторым источникам намного меньше.

У генетиков принят термин – эффективный размер популяции. Он обозначает необходимое количество особей для передачи всего генетического материала. Согласно исследованиям, для сохранения генетической информации человека необходимо около 15 000 людей, не более 0,02% от всего населения. У мышей эффективный размер популяции равен 733 000 особей. Таким образом, генетическая схожесть не является определяющим фактором для утверждения о том, что когда-то человек и шимпанзе имели общего предка. Споры по этому вопросу не утихают до сих пор.


Голос за пост - плюсик в карму! :)

Миф об 1%

ДНК человека и шимпанзе очень отличаются

Дон Батен

Почему люди продолжают верить в миф об 1% отличии ДНК человека и шимпанзе, когда в действительности эта разница составляет до 30%?

Мы до сих пор часто слышим заявления о том, что ДНК человека и шимпанзе почти идентичны, и что разница составляет всего лишь 1%. К примеру, в докладе за 2012 г. о секвенировании ДНК карликового шимпанзе сказано:

«С тех пор как в 2005 г. исследователи расшифровали генетическую последовательность шимпанзе, было установлено, что 99% ДНК человека и обезьян одинаковы. Это означает, что шимпанзе – наши ближайшие родственники».1

Это заявление было опубликовано не в каком-то сомнительном источнике. А в самом престижном научном журнале Science , публикуемом Американской Ассоциацией содействия развитию науки. Science считается одним из двух самых авторитетных научных журналов в мире (второй - британский журнал Nature ).

Впервые заявление об отличии в 1% прозвучало в 1975 г.2 Это было задолго до того, как ученые смогли сравнить отдельные «символы» (пары оснований) ДНК человека и шимпанзе — первый проект по расшифровке человеческой ДНК был опубликован лишь в 2001 г., а ДНК шимпанзе в 2005 г. Так откуда взялся заявленный в 1975 г. 1%? Дело в том, что генетики провели примерные сравнения очень ограниченных участков ДНК человека и шимпанзе, которые были предварительно выбраны для проверки их сходства. Нити ДНК человека и обезьяны проверили на то, насколько они способны соединяться друг с другом — метод, известный как ДНК гибридизация.

Отличие в 1% означает, что мы «почти идентичны»?

Человеческий геном содержит около 3000 млн. «символов». Если показатель 1% верен, отличие должно составлять 30 млн. символов – это равно 10 напечатанным книгам размеров с Библию. Это в 50 раз больше ДНК, чем у самой простой бактерии.3 На самом деле это очень большое отличие, превышающее способности даже самого оптимистического эволюционного сценария, даже если учитывать миллионы лет.4

Каковое же реальное отличие?

Публикация о секвенировании ДНК человека и шимпанзе дала возможность провести сравнение. Однако даже это сделать непросто, потому что геном шимпанзе не был построен на ровном месте. Что сделали генетики? Они секвенировали маленькие кусочки ДНК шимпанзе. Т.е. с помощью химических лабораторных процедур они определили последовательность расположения химических символов. Затем эти маленькие цепочки из «символов» соединили с человеческим геномом в тех местах, в которых, по их мнению, они должны совпадать (для сравнения и размещения сегментов использовались компьютеры). После этого человеческий геном убрали и получили псевдогеном шимпанзе, который якобы указывал на общее родство с человеком (т.е. эволюцию).

Таким образом, была получена смешанная последовательность , которая не является настоящей. Предположение эволюции в получении генома шимпанзе таким вот способом должно было бы создать видимость генома человека больше, чем он есть на самом деле. Но даже если учитывать это эволюционное предубеждение, реальные отличия намного больше, чем 1%.

В 2007 г. в Science была опубликована статья о сходстве ДНК человека и шимпанзе. Заголовок звучал так: «Относительные отличия: миф об 1%».2 Автор статьи Джон Коен ставит под вопрос цифру 1%. Он ссылается на данные сравнения, которые были проведены в проекте по секвенированию ДНК шимпанзе. Согласно анализу это отличие составляет минимум 5%. Несмотря на это, в журнале продолжают появляться заявления об 1%.

Для того чтобы показать, насколько это неправильно, Джеффри Томкинс и Джерри Бергман в 2012 г. пересмотрели опубликованные исследования, в которых проводились сравнения ДНК человека и шимпанзе.5 Они пришли к выводу: «Если взять всю ДНК, а не только отобранные заранее участки, можно смело заключить, что сходство генома человека и шимпанзе составляет примерно 87%, во всяком случае, не больше 81%».

Другими словами, отличия между обезьяной и человеком огромны, возможно даже больше чем 19%. Д-р Томкинс провел свои собственные сравнения и получил цифру 30%!6 К тому же вопреки ожиданиям эволюционистов у шимпанзе и человека очень разные Y-хромосомы, носителями которых являются только мужчины.7

Огромная разница между людьми и обезьянами не оправдывает эволюционных ожиданий, но наоборот подтверждает тот факт, что мы были сотворены отдельно от животных.

Сравнение двух сложных геномов – дело непростое! Необходимо определить, насколько важны различные части ДНК, и какое значение имеют разные типы отличий. К примеру, как быть с генами человека, которые отсутствуют у шимпанзе, и наоборот? Похоже, что генетики-эволюционисты их игнорируют, а сравниваются только схожие гены.

Во многих сравнениях использовались только гены, которые кодируют белки (только 1,2% ДНК, а многие гены, кодирующие белки, как у человека, так и у шимпанзе, почти одинаковы8 ). Причем считалось, что остальная часть ДНК неважная или «мусорная». Однако подобное мнение не обосновано. Почти вся ДНК имеет функцию, что снова противоречит ожиданиям эволюционистов.9 Но даже если бы «мусорная» ДНК была нефункциональной, отличия были бы гораздо больше, чем в участках, кодирующих белки, и при определении отличий их следовало бы учитывать. Люди и обезьяны не идентичны на 99%. Нет!

Какой бы ни был процент сходства, что он доказывает?

Ни эволюционисты, ни креационисты не делали прогнозов о проценте сходства до того, как он был подсчитан. Другими словами, каким бы ни был процент сходства: 99%, 95%, 70% или какой-либо другой, эволюционисты все равно будут доказывать общее родство с обезьянами, а креационисты будут видеть в этом общий дизайн. Размышляя над последствиями этих данных, мы должны понимать, что имеем дело не с точной наукой, которую можно доказать путем эксперимента. Каждый получает свое значение, основываясь на личное мировоззрение.

Однако, чем больше отличий между человеком и обезьяной, тем сложнее эволюционистам объяснить их в рамках эволюционной временной шкалы. Именно поэтому они изо всех сил пытаются уменьшить эти отличия.

Миф продолжает жить

Сравнения целых геномов подтвердили, что отличие между человеком и обезьяной намного больше, чем 1%. Так почему же миф об 1% продолжает жить?

Почему журнал Science увековечил этот миф в 2012 г.? В 2007 Коен привел высказывание генетика Сванте Паабо, специалиста по шимпанзе, члена консорциума Института эволюционной антропологии им. Макса Планка (Германия): «В конце концов, вопрос отличия между человеком и обезьяной - это больше политический, социальный и культурный вопрос».2

Возможно, эволюционисты не откажутся от мифа об 1% именно потому, что он имеет политический, социальный и культурный смысл. Они делают это с одной целью – чтобы отрицать явные выводы сравнений ДНК, что мы, люди, очень отличаемся от шимпанзе . Миф о сходстве используется еще и для поддержки мнения о том, что люди не имеют особого места в этом мире, и что обезьяны могут и должны иметь такие же права, как и человек.10

Огромная разница между людьми и обезьянами не оправдывает эволюционных ожиданий, а наоборот подтверждает тот факт, что мы были сотворены отдельно от животных. Бог создал первого человека из праха земного (Бытие 2:7), а первую женщину из ребра мужчины (Бытие 2:22), а не из обезьяноподобного существа. Люди, в отличие от животных, были сотворены по образу Бога (Бытие 1:26, 27). Они – особое творение. Этот образ не был потерян во время грехопадения, он был испорчен,11 поэтому Бог сотворил людей с особым замыслом и сейчас и в вечности.

  1. Гиббонс A., Карликовые шимпанзе становятся, так же как и обычные шимпанзе, самыми ближайшими родственниками человека // Science Now , 13 June 2012; news.sciencemag.org .

Какое количество хромосом у человекообразных обезьян, Вы узнаете из этой статьи.

Сколько хромосом у обезьяны?

Хромосомы – это генетический материал, который находится в клетке организма. В каждой из них содержится молекула ДНК в скрученном виде спирали. Полный набор хромосом именуется кариотипом.

Генетическое сходство человека и человекообразных обезьян просто поражают. ДНК человека и обезьяны совпадают на 98,9%. А количество хромосом отличается всего одной парой.

У шимпанзе их 48, то есть 24 пары, а у человека – 46, то есть 23 пары.

Почему так? Дело в том, что в ходе эволюционного процесса у наших предков две различные хромосомы (переданные от приматов) объединились в одну. Это очень важный момент, который определил генетическую изоляцию и видообразование. Кстати, такие изменения в числе хромосом наблюдаются и у других видов. На каком-то этапе общая ветвь развития общего предка человека и обезьяны разошлась. Начались скоростные накопления мутаций, которые и установили различие в ДНК и количестве хромосом. Приблизительно наше расхождение с шимпанзе случилось в период от 5,4 до 7 млн. лет назад.

У человека 23 пары хромосом, у высших обезьян - 24. Оказывается (к этому все больше склоняются генетики), вторая пара хромосом человека образовалась от слияния пар других хромосом предковых антропоидов, что показано и на представленном в начале главы рисунке. Вот вам и 48 хромосом понгидов против 46 человека! Парижская конференция генетиков и 1971 и 1975 гг. одобрила весьма наглядную таблицу гомологии хромосом человека и трех человекообразных обезьян. На ней видно: шимпанзе - самый близкий наш сородич с почти таким же, как у нас, кариотипом (особенно близок к нам по хромосомам карликовый шимпанзе).

Но не надо думать, что другие, в том числе и низшие, обезьяны очень уж отдалены от человека по строению хромосом. У многих игрунок, некоторых каллицебусов, уакари, даже у лемура вари число хромосом одинаково с людьми - 46 (двойной набор); у капуцинов - 54; у ревунов - 44-52 (разные виды); у мартышек - от 48 до 72; у макаков и павианов - 42; у лангуров - 44; у большинства гиббонов - 44 (у сиаманга - 50). Но родство приматов оценивается, конечно, не только по числу хромосом. Если "вытянуть" все хромосомы каждого вида в одну линию, она у всех видов приматов оказывается одинаковой длины. Меняется лишь количество центромер (т. е. фактически число хромосом), распределение плеч. Одинаково у них и суммарное количество вещества наследственности - ДНК.

В 60-х гг. установлено большое сходство кариотипов человека и многих видов низших обезьян. При изучении филогении хромосом 60 видов приматов от мышиного микроцебуса до человека французский генетик Б. Дютрилло (1979) установил полную аналогию, примерно 70 % неповторяющихся окрашенных полос. Доказательством близкого сходства и родства являются также "человеческие" генетические болезни у обезьян: синдром Дауна, алкаптонурия, аномалии развития. Комплекс гистосовместимости (сродства тканей, необходимого при пересадке органов) локализован в генах на хромосомах шимпанзе , гориллы, орангутана и макака резуса одинаково - окрашенность этих участков у обезьян полностью идентична рисунку на хромосоме 6 человека. Гены, "отвечающие" за кодирование пяти жизненно важных ферментов у капуцина, расположены в хромосомах 2, 9 и 15 - они кодируются точно так же в одинаковых по строению хромосомах человека, но имеющих другую нумерацию.

Но, конечно, наибольшее сходство хромосом установлено у человека с шимпанзе - оно доходит до 90-98 % (по разным авторам). Любопытно запомнить: два вида мартышек, представители одного рода - мартышка Брасса (диплоидной набор хромосом 62) и мартышка талапоин (54 хромосомы) оказываются гомологичными только по 10 парам хромосом, т. е. значительно менее родственными, чем человек и шимпанзе.

Теперь после рассмотрения главных, фундаментальных признаков сходства человека и обезьян по хромосомам будет понятно родство приматов и по другим связанным с генетическим родством показателям. Как мы помним, гены и их вместилище - хромосомы - это участки имеющихся в каждой клетке ядерных (значит, нуклеиновых) кислот, точнее, дезоксирибонуклеиновой кислоты (ДНК). Уже в 60-х гг., сразу за великими открытиями 50-х гг. XX в., когда была установлена роль и структура ДНК, началось ее интенсивное изучение и сопоставление у разных организмов. Так, научились гибридизировать ДНК разных видов. Если ее подогреть, она, нормально двухспиральная, "расплетается" в одиночные нити, на которые можно "нарастить" (наложить) такую же нить ДНК от другого животного, если оно имеет сходные гены. Когда эти нити остынут, они свернутся снова в двойную общую спираль, но лишь настолько, насколько родственны организмы - хозяева этих двух ДНК.

Оказалось, что ДНК человека и птицы гибридизируется на величину 10%, человека и мыши - на 19, человека и более крупных млекопитающих - на 30- 40, но человека и макака резуса - на 66-74%.

Что же касается шимпанзе, то здесь, как упомянуто, гибрид с ДНК человека доходит, по разным авторам, до 90-98 %. Температура, при которой "плавится" эта сращенная ДНК (она разная у гибридов различной близости и поэтому тоже является показателем родства их хозяев), полностью подтверждает особую близость человека с другими приматами.

Когда была обнаружена быстро эволюционировавшая ДНК неядерных образований клетки - митохондрий, скептики выразили сомнения в достоверности данных, полученных на основании сопоставлений ядерной ДНК (хотя хорошо известно, что именно она является основным материалом хромосом, локализованных, как сказано, в ядре клетки): ведь ДНК митохондрий, по мнению некоторых авторов, изменяется в 5-10 раз быстрее ядерной и, таким образом, представляет нам генетические изменения как бы в увеличенном виде.

Калифорнийские биохимики провели исследование (в нем участвовал уже известный нам Алан Вильсон) специально по изучению ДНК митохондрий. Метод, использованный ими, обладает исключительной точностью. Он основан на определении участков ДНК, расщепляемых высокоспецифичными ферментами - рестрикционными эндонуклеазами. Эти ферменты распознают строго определенные последовательности нуклеотидов ДНК и разрезают молекулу только в этих местах. В результате даже незначительные изменения состава или порядка нуклеотидов становятся доступными для анализа.

Путем построения карт участков (или, как говорят ученые, сайтов) действия различных ферментов-рестриктаз можно анализировать весьма близко родственные молекулы ДНК, например, субтипов одного и того же вируса и т. д. И все тот же результат - необычайное родство! И в той же степени, которая установлена уже известными читателю биохимическими и генетическими методами, максимально близки к человеку шимпанзе и гориллы . Дальше отстоит орангутан, еще несколько дальше - гиббоны.

Такое же заключение сделано и при изучении "сателлитной", спутниковой ДНК хромосом, при картировании семейства генов интерферона и др.

После столь большого сходства по хромосомам (ДНК) ни у кого уже не может вызывать удивление "поразительное" сходство белков крови и тканей человека и обезьян - ведь они, белки, получают "программу" от кодирующих их столь близких, как мы видели, родительских субстанций, т. е. от генов, от ДНК! Белки в основном ныне изучаются наряду с иммунологическими методами еще путем определения последовательности аминокислот, порядок, чередование которых, как это стало известно также в 50-е гг., и составляет "физиономию" каждого белка.

Мы уже видели уровень сходства белка альбумина у человека и различных животных. В целом оно выявляется примерно в такой же последовательности и по другим белкам, но иногда бывает выше - по этим показателям африканские антропоиды оказываются ближе к человеку. Вот данные по трансферину - иммунологическая близость выражается в процентах следующим образом: у человека с шимпанзе и гориллой - 100% (полная идентичность!), с обезьянами Старого Света - от 50 до 75, с другими животными - либо ниже 4%, либо нуль, отсутствие сходства. Профессор Г. А. Анненков вполне обосновано предположил, что "высокая степень тождества в строении и функциях распространяется на многие сывороточные белки крови всех (или большинства) приматов".

А вот данные по липопротеинам низкой плотности, играющим важнейшую роль при развитии атеросклероза: иммунологическое сходство их у человека с пресмыкающимися и рыбами-1-10%, с птицами - 10, со свиньями - 35-58, с различными узконосыми обезьянами - 80-85, с шимпанзе - более 90 %. Другой же родственный компонент крови - аполипопротеин, также по данным иммунологического исследования, гомологичен у человека и разных обезьян, но неотличим в плазме людей, шимпанзе и гориллы.

Несопоставимо ни с какими другими животными сходство человека и обезьян по строению и свойствам многих гормонов. Гормон роста очень видоспецифичен, но одинаков у человека и даже макака. Введенный ребенку от обезьян, он будет также эффективно действовать, как такой же гормон от людей (установлено Нобелевским лауреатом американцем Ли Чо Хао). Почти полное тождество установлено недавно (Уэтекем и др., 1982) при изучении нуклеотидной последовательности ДНК, кодирующей гормон инсулин человека и яванского макака, в самом же гормоне, в его белке можно отыскать только две замены в аминокислотной последовательности.

Как показали сухумские эндокринологи Н. П. Гончаров, Г. В. Кация, В. Ю. Бутнев, нет в природе животных, настолько же близких к человеку, как обезьяны в частности павианы, по характеру обмена стероидных гормонов, вырабатываемых надпочечниками и играющих колоссальную роль в системе размножения. Мыши, кролики, крысы, которые, замечу, постоянно используются в исследованиях по стероидогенезу, продуцируют в наибольшем количестве гормон кортикостерон, в то время как у человека и обезьяны преимущественным гормоном этой группы является кортизол. Соотношение двух названных гормонов у обоих приматов почти одинаково и разительно отличается от их пропорций у грызунов.

Один из популярных доводов креационистов звучит так: у человекообразных обезьян - шимпанзе, горилл и орангутанов - на 2 хромосомы больше, чем у человека. Как же получилось, что в процессе эволюции у людей потерялись хромосомы? Происходит ли что-то подобное у нас сейчас? Почему люди могут и не подозревать, что они - мутанты? Каким образом эти мутанты размножаются?

Сравнение хромосом человека и шимпанзе.Видно, что 2-я хромосома человека соответствует 2-м хромосомам шимпанзе. Источник: Jorge Yunis, Science 208:1145-58 (1980). Courtesy of Science magazine.

Напомним нашим уважаемым читателям, что хромосомы - это такие штуки, в которые в наших клетках упакована ДНК. У человека 23 пары хромосом: 23 хромосомы достались нам от мамы и 23 - от папы. Итого 46. У шимпанзе - 24+24=48. Полный набор хромосом называется «кариотип». В каждой хромосоме находится в плотно скрученном виде очень большая молекула ДНК. На самом деле, важно не число хромосом, а те гены, которые в этих хромосомах содержатся. Один и тот же набор генов может быть упакован в разное число хромосом.

В 1980 году в авторитетном журнале Science вышла статья команды генетиков университета Миннеаполиса. Исследователи применили новейшие на тот момент методы окраски хромосом (на хромосомах появляются поперечные полоски разной толщины и яркости, при этом каждая хромосома отличается своим особым набором полосок). Оказалось, что у человека и шимпанзе исчерченность хромосом почти идентична! Но как быть с лишней хромосомой у обезьян? Всё очень просто: если напротив второй хромосомы человека поставить в одну линию 12-ю и 13-ю хромосомы шимпанзе, соединив их концами, мы увидим, что вместе они и составляют вторую человеческую.

Позже, в 1991 году, учёные присмотрелись к точке предполагаемого слияния на второй человеческой хромосоме и обнаружили там то, что и искали, - последовательности ДНК, характерные для теломер - концевых участков хромосом. Ещё через год на той же хромосоме нашлись следы второй центромеры (центромера - участок, необходимый для нормального деления клетки. Центромера обычно делит хромосому на две части, называемые плечами; у каждой хромосомы имеется только одна активная центромера). Очевидно, на месте одной хромосомы раньше было две. Итак, когда-то у наших предков две хромосомы слились в одну, образовав 2-ю хромосому человека.

Как давно это случилось? Сейчас, когда палеогенетики научились восстанавливать геномы ископаемых существ, мы знаем, что и у неандертальца, и у денисовского человека несколько десятков тысяч лет назад уже было 46 хромосом, как и у нас. По современным данным, слияние произошло гораздо раньше, в интервале 2,5-4,5 млн лет назад. Для того чтобы определить дату точнее, хорошо бы заполучить геномы гейдельбергского человека и Homo erectus, а также полностью реконструировать соответствующие хромосомы современных человекообразных обезьян.

Но возникает вопрос: допустим, у кого-то из наших предков две хромосомы соединились в одну. У него получилось нечётное количество хромосом - 47, в то время как у остальных, не мутировавших особей - по-прежнему 48! И как же такой мутант потом размножался? Как вообще могут скрещиваться особи с разным числом хромосом? Напомню, что при мейозе - клеточном делении, в результате которого образуются половые клетки - каждая хромосома в клетке должна соединиться со своей парой-гомологом. А тут возникла непарная хромосома! Куда же ей податься?

Но оказывается, это - не проблема, если при мейозе гомологичные участки хромосом найдут друг друга. В случае нечётного числа хромосом некоторые половые клетки могут нести «несбалансированный» генетический набор из-за неправильного расхождения хромосом в мейозе, но другие могут получиться вполне нормальными.

При скрещивании 47-хромосомного мутанта с 48-хромосомной «дикой» особью часть деток получится обычной, 48-хромосомной (24+24), а часть - 47-хромосомной (23 от мутантного родителя + 24 от обычного). В итоге появляются уже несколько особей с нечётным числом хромосом. Остаётся им встретиться - и вуаля: в следующем поколении появляются 46-хромосомники (23+23). Специалисты полагают, что дальнейшее распространение 46-хромосомного типа могло произойти благодаря неким эволюционным преимуществам, возникшим в результате этой мутации. Слияние хромосом привело к потере или изменению работы генов, находившихся вблизи точки слияния. Может быть, из-за этого возросла плодовитость или усилились когнитивные способности (исследования показывают, что несколько генов, находящихся вблизи точки слияния хромосом, экспрессируются в мозгу, а также в половых железах мужчин).

Модель «гориллоподобного» полигамного клана ранних Homo, где у самца (или мужчины) произошло слияние хромосом. Квадратики - самцы, кружки - самки.Самец с возникшей мутацией (II поколение), обладатель 47 хромосом, имел детей от нескольких самок (III поколение). В итоге, часть его потомков получились 48-хромосомными (незакрашенные), часть - 47-хромосомными (наполовину закрашенные), в дополнение к больным и мёртвым из-за несбалансированности хромосом (чёрные треугольники). В IV поколении в результате скрещивания двух носителей мутации получаются 46-хромосомные варианты (полностью закрашенные кружок и квадрат).

Кто-нибудь скажет, что всё это фантазии. Однако слияние хромосом происходит у людей и сейчас, в результате распространённой мутации - робертсоновской транслокации (сокращённо - ROB).

Если вы видели хромосому на картинке, то представляете, что часто она выглядит как два «плеча», отходящих от одной точки - (эта точка и является центромерой). Иногда плечи одинаковой длины - такую хромосому называют метацентрической. Если плечи неравны - хромосома субметацентрическая. И если одно из плеч такое коротенькое, что его почти не видно, - хромосома акроцентрическая.

Так вот, при ROB две акроцентрические хромосомы разрываются в точке центромеры, и их длинные плечи сливаются, формируя новую единую хромосому. Короткие плечи тоже соединяются и образуют маленькую хромосому, которая обычно теряется за несколько клеточных делений. Вот и стало на хромосому меньше. При этом маленькая хромосома содержит так мало генетического материала, что может пропасть без какого-либо заметного эффекта для индивида. Всё бы хорошо, только у организма получился нечётный набор хромосом (22+23=45 вместо 46).

Робертсоновские транслокации - не такое уж редкое событие. 45 хромосом обнаруживается у каждого 1000-го новорождённого ребёнка. У человека ROB может затрагивать акроцентрические хромосомы 13, 14, 15, 21 и 22. Большинство носителей ROB абсолютно здоровы и ни о чём не подозревают, пока не пытаются заводить детей. Но проблем может и не возникать - и в этом случае мутация будет передаваться из поколения в поколение, никем не замеченная.

А каков шанс двум таким мутантам встретиться и родить 44-хромосомного ребёночка? Казалось бы, это очень маловероятное событие. Однако в небольших человеческих популяциях браки между родственниками - например, кузенами - не редкость. В этом случае скрещивание двух носителей ROB вполне возможно. Такие истории известны генетикам уже много десятилетий. Вот только две из них.

Факт передачи мутации в течение как минимум 9 поколений зафиксирован в 1987 году. ROB были обнаружены в трёх финских семьях, восходящих к общему предку. Генеалогию семей удалось проследить до начала XVIII века, когда их предки жили в 3-х деревнях на севере нынешней Финляндии, недалеко друг от друга. Самая крупная из семей содержала на момент исследования как минимум 49 носителей слившихся хромосом 13 и 14. Среди них нашлась и гомозигота по мутации, обладатель 44 хромосом - женщина, родители которой были троюродными кузенами. За исключением небольшого роста, 152 см, она была здорова и родила 6 детей! Умерла удивительная женщина в 63 года от остановки сердца.

Ещё один случай зафиксирован в 2016 году в Китае. История такова: 25-летний китайский мужчина женился на молодой женщине; у них родился сын, но умер 6 месяцев от роду. В связи с этим медики сделали генетический анализ. Выяснилось, что умерший ребёнок был 45-хромосомным, мама - обычная, а вот папа - обладатель 44 хромосом. Дальнейшее расследование показало, что родители мужчины - двоюродные брат и сестра, оба носители ROB. У них слились в одну хромосомы 14 и 15. Специалисты решили провести полное обследование уникального пациента. Для начала его осмотрели психиатр и невропатолог, которые не выявили никаких отклонений от нормы. Затем мужчине сделали томограмму мозга, электроэнцефалограмму и даже люмбальную пункцию - всё прекрасно, «мутант» здоров как бык. Далее учёные изучили сперматозоиды как самого мужчины (44 хромосомы), так и его отца (45 хромосом). У отца 20% спермиев оказались несбалансированными, зато у сына - 99,7% спермиев были вполне нормальны. Итак, наш 44-хромосомный мужчина здоров и готов к размножению. Конечно, как видим, при браке с женщиной - носителем обычного кариотипа, у него возникли трудности. А вот если бы ему попалась такая же, как он, ROB-гомозигота - всё было бы идеально.

По мнению авторов исследования, репродуктивный барьер между носителями ROB и обычными людьми, теоретически, может привести к формированию изолированной популяции 44-хромосомных людей, скрещивающихся друг с дружкой. А это уже путь к возникновению нового подвида Homo sapiens.