Эоловые процессы. Карстовые и эоловые процессы это Что будем делать с полученным материалом

Деятельность ветра является одним из важнейших геологических и рельефообразующих факторов на поверхности суши. Все процессы, обусловленные деятельностью ветра, создаваемые ими отложения рельефа и формы называют эоловыми (Эол - бог ветров в греческой мифологии ). Эоловые процессы протекают на всей территории суши, но наиболее активно проявляются в пустынях, полупустынях, на побережьях морей и океанов. Этому способствует оптимальное сочетание условий, способствующих развитию эоловых процессов: 1) отсутствие или разреженность растительного покрова, определяющее наличие непосредственного контакта горных пород, слагающих территорию, и воздушных потоков атмосферы; 2) частые ветры; 3) наличие больших объёмов рыхлого материала, способного перемещаться ветром. Необходимо отметить, что существенное значение при «поставке» обломочного материала, в дальнейшем перемещаемого ветром, в пустынях (для которых, как известно, характерны значительные суточные колебания температуры) имеет температурное выветривание. Существенную роль эоловые процессы играют также в сухих степях, саваннах, приледниковых областях, долинах крупных рек и других открытых ландшафтах. Переносимый ветром тонкий материал может перемещаться на сотни и даже тысячи километров (достаточно отметить, что на значительных участках океанического дна вклад эолового материал достигает 50-70% и более).

Геологическая деятельность ветра складывается из процессов разрушения пород, переноса материала и его аккумуляции, тесно взаимосвязанных и протекающих одновременно.

Разрушительная деятельность ветра

Разрушительная деятельность ветра складывается из двух процессов - дефляции и корразии.

Дефляция (от лат. «deflatio» - сдувание ) - процесс выдувания и развевания ветром частиц рыхлых горных пород. Дефляции подвергаются мелкие частицы пелитовой, алевритовой и песчаной размерности. Различают площадную и локальную дефляцию. Площадная дефляция приводит к равномерному выдуванию рыхлых частиц с обширных площадей; понижение поверхности за счёт такой дефляции может достигать 3 см в год. Развитие локальной дефляции определяется особенностями движения воздушных потоков и характером рельефа. С действием восходящих вихревых потоков связано образование котловин выдувания. В качестве особого вида локальной дефляции выделяют бороздовую дефляцию. В трещинах, узких щелях или бороздах сила ветра больше, и рыхлый материал выдувается оттуда в первую очередь. В частности с этим видом дефляции связано углубление колеи дорог: в Китае, на сложенных лёссом территориях, на месте дорог образуются узкие каньоны глубиной в первые десятки метров.

Корразия (от лат. «corrado» - скоблю, соскребаю ) – процесс механического истирания горных пород обломочным материалом, переносимым ветром. Заключается в обтачивании, шлифовании, и высверливании горных пород. Частицы, переносимые ветром, ударяясь о поверхность встречающихся на пути коренных горных пород, действуют в качестве природного «абразивного инструмента», вырабатывая на их поверхности штрихи, борозды, ниши и другие характерные формы. В процессе такого обтачивания происходит также образование нового обломочного материала, вовлекаемого в процесс дефляции (грубой аналогией подобного процесса может служить действие абразивного инструмента на предмет - в результате обработки предмет изменяет форму, а удаляемая часть превращается в стачиваемый мелкий материал). Таким образом, процессы корразии и дефляции взаимосвязаны и протекают одновременно.

Перенос материала ветром

Перенос материала ветром может осуществляться в следующих формах: перекатыванием, путем скачкообразных движений и во взвешенном состоянии.

Перекатыванием или скольжением перемещаются крупные зёрна песка и, при штормовых и ураганных ветрах, гальки и щебень.
Путём скачкообразных движений (или сальтацией от лат. «saltatio» - скачок ). Таким образом перемещаются зёрна мелко- и среднезернистого песка (размером 0,1-0,5 мм). В процессе сальтации песчаное зерно при порыве ветра отрывается от поверхности (поднимаясь на высоту см - десятки см), описывает в воздухе параболическую кривую, затем, ударяясь о лежащие на поверхности зёрна, вовлекает в движение. Фактически движение ветра и переносимых им частиц представляет собой движение ветропесчаного потока. Насыщенность потока песком убывает по мере удаления от поверхности; на высоту более 1 м песчаные зёрна поднимаются только при очень сильных ветрах. Важнейшим параметром, определяющим характер ветропесчаного потока, является скорость ветров. Для приведения в движение мелкозернистого сухого песка (с размером частиц 0,1-0,25 мм) необходима скорость ветра около 4-5 м/сек, для крупнозернистых песков с диаметром частиц 0,5-1 мм - 10-11 м/сек. Как правило, песчаный материал переносится в пределах пустынь.
Перемещение во взвешенном состоянии характерно для пылеватых частиц. Частицы движутся в воздушном потоке (на высоте до 3-6 км) не опускаясь на поверхность до изменения условий (скорости ветра и пр.). Алевритовый и пелитовый материал при благоприятных условиях (сочетание сухого воздуха аридных областей и сильного ветра) может перемещаться на тысячи км. Особенно далеко может переноситься пыль, поднятая на большую высоту при извержениях вулканов. Так пепел вулкана Кракатау во время извержения 1883 года облетел земной шар и находился в воздухе около трёх лет, оседая в разных частях планеты (иногда в виде «кровавых дождей»). Часто перенос крупных частиц осуществляется ураганами и смерчами.

Аккумулятивная деятельность ветра

Аккумулятивная деятельность ветра заключается в накоплении эоловых отложений, среди которых выделяются два генетических типа - эоловые пески и эоловые лёссы. Эти отложения в современную эпоху образуются в пустынях и на их периферии, но во время четвертичного оледенения активно формировались и в зоне, обрамлявшей покровные ледники. Эоловые отложения возникают преимущественно в результате ветрового захвата и переноса более древних накоплений (морских, речных, озёрных и др.) или, частичном участии продуктов механического разрушения других пород. В зависимости от степени и характера эоловой переработки исходного материала песчаные отложения подразделяются на неперемещенные (перевеянные) и перемещенные (навеянные). Перевеянные отложения залегают в непосредственной близости от пород (песков) за счёт переложения которых накопились, представлены преимущественно песками. Навеянные отложения лишены пространственной связи с материнскими породами, для них характерно обогащение мелкозернистым материалом, способным перемещаться на большие расстояния, представлены лёссами.

Эоловый лёсс (нем. «Loss» от «lose» - рыхлый, нетвёрдый ) - отложения, сложенные пылеватыми частицами, неслоистые, обладающие высокой пористостью. Характерными особенностями лёссов являются следующие.

  • Мелкозернистый пылеватый состав. Частицы размером более 0,25 мм отсутствуют или составляют не более 5%.
  • Высокая пористость – объём пор может достигать 50-55%. Эта особенность определяет способность лёссов обваливаться большими глыбами и просаживаться при увлажнении или под нагрузкой (например, весом построек). Благодаря рыхлости пород они легко разрушаются при дефляции или под действием водных потоков (знаменитая «жёлтая» река – Хуанхэ – имеет специфичный цвет вод за счёт переноса большого объёма лёссового материала).
  • Залегание в форме плащеобразных покровов.
  • Отсутствие слоистости и однородность состава.
  • Наличие в них горизонтов погребенных почв. Изучение особенностей захороненных в толщах лёссов пыльцы и ископаемых моллюсков указывает на их образование в условиях холодного ледникового климата. Горизонты почв, напортив, содержат признаки формирования в более теплых условиях. Эта особенность позволила определить, что значительная часть лёссов возникла в ледниковые эпохи в приледниковых зонах (а захороненные в них почвы – в период межледниковий).

Эоловые пески также обладают рядом специфических особенностей, среди которых необходимо отметить следующие.

  • Хорошая сортированность зёрен с преобладанием частиц размером 0,1-0,25 мм.
  • Матовая поверхность зёрен, наличие так называемых «пустынного загара» - железистой или марганцевой плёнки на их поверхности.
  • Наличие в отложениях ветрогранников - обломков горных пород двух-, трёх-, четырёхгранной формы, возникающие вследствие шлифующего действия песка, переносимого ветром.
  • Косая слоистость с углами падения слойков около 30 0 .
  • Отсутствие фауны и цемента.

Следует добавить, что, осаждаясь из воздуха, в том числе вместе с каплями дождя и со снегом, пылеватые частицы примешиваются к морским и континентальным осадкам разного генезиса, не образуя в таких случаях самостоятельных эоловых накоплений.

Эоловые формы рельефа

Наиболее распространены аккумулятивные и аккумулятивно-дефляционные формы , образующиеся в результате перемещения и отложения ветром песчаных частиц, а также выработанные (дефляционные) формы , возникающие за счет выдувания рыхлых продуктов выветривания. Форма и величина аккумулятивных и аккумулятивно-дефляционных образований зависит от сочетания ряда факторов: характера и режима ветров, количества растительности (препятствующей свободному движению песков), а также насыщенности песчаными частицами ветропесчаного потока, увлажнения песков, характера подстилающей поверхности и некоторых других. Зависимость форм рельефа песков от условий образования приведена на рисунке.

Максимальное распространение эоловые формы получают в пустынях. Для рельефа пустынь характерно одновременное присутствие наложенных друг на друга различных по масштабу динамичных аккумулятивных и дефляционно-аккумулятивных эоловых форм.
Основным элементом микрорельефа является эоловая рябь . Как известно, между двумя параллельно движущимися средами с разной плотностью и подвижностью (в данном случае - сухой песок и воздух) поверхность раздела приобретает волнообразный характер. Волнообразность движения поверхности песка приводит к образованию на его поверхности движущейся ряби. Высота валиков ряби от миллиметров до десятков сантиметров, валики ассиметричны – более пологим является наветренный склон. Массовое перекатывание песчинок происходит преимущественно в пределах лишь одного валика ряби, начинаясь на его наветренном склоне и заканчиваясь на гребешке. Движение ряби и «песчаных волн» осуществляется за счёт осыпания подветренного склона валиков.
Более крупными элементами рельефа являются щитовидные скопления песков, образующиеся в понижениях рельефа или ветровой тени. В дальнейшем щитовые скопления перестраиваются в барханные формы рельефа - одиночные и групповые барханы, затем - в барханные цепи, барханные гряды и т.д.

Барханы - подвижные аккумулятивно-дефляционные формы рельефа пустынь, представляющие собой серповидные в плане крупные скопления песков. Характерной морфологической особенностью барханов служит полулунное или серповидное очертание в плане и наличие ассиметричных склонов: длинного пологого (5-14°) наветренного и короткого крутого (30-33°) подветренного, переходящих в вытянутые по ветру «рога». При этом «рога» направлены по направлению ветра. Высота барханов обычно составляет первые метры, но может достигать 100 м и более. Барханы динамичны и меняют свою форму в зависимости от направления и скорости ветра и равномерности поступления того или иного количества песка.
Движение песка по профилю бархана в разных его частях неодинаково. На нём можно выделить три следующие зоны.

  1. Зона развевания, или дефляции, которая характеризуется процессами отрыва зёрен от поверхности песка при отсутствии их привноса. Здесь имеет место вынос зёрен песка с поверхности.
  2. Зона переноса и обмена. При незначительной скорости ветра происходит интенсивное перемещение из зоны дефляции ряби; при сильных ветрах - в момент удара струйки ветропесчаного потока о поверхность подветренного склона происходит перераспределение песка по крупности (более крупный оседает на склоне, лёгкий - приносимый или оторванный при соударении - вовлекается в дальнейшее движение).
  3. Зона аккумуляции, где происходит накопление песка, перенесенного из зоны дефляции.

Продольный профиль бархана

1 - зона выноса, 2 - зона переноса, 3 - зона накопления, 4 - нейтральная зона, 5 - наветренный склон, 6 - склон осыпания, 7 - гребень, 8 - высота бархана, 9 - путь предельного насыщения ветропесчаного потока песком.

Характерной особенностью бархана является образование вихря за гребнем цепи (в «ветровой тени»), приводящим к возникновению потока воздуха, обратного направлению ветра. Песок, сносимый ветром с гребня бархана или осыпающийся при достижении рябью гребня, попадает в этот вихрь и осаждается на склоне. Наличие указанной аэродинамической особенности определяет асимметричное строение бархана и его устойчивость.
Более сложной формой эолового рельефа пустынь является барханная цепь. Барханная цепь представляет собой подвижное скопление песка, имеющее форму сильно вытянутого асимметричного волнообразного вала. Барханные цепи обычно располагаются параллельными рядами. Это связано с формированием двух взаимо-перпендикулярных потоков воздуха при их образовании: один, основной, соответствует направлению ветра (он перпендикулярен цепи), второй, образованный за счёт снижения давления при образовании вихрей в зоне аккумуляции, имеет параллельное цепям направление. Длительное существование перпендикулярых направлению ветра барханных форм возможно лишь при наличии двух противоположно ориентированных направлений господствующих ветров (сдерживающим вытягивание «рогов» параллельно ветру). Наличие одного господствующего направления ветров приводит к развитию ассиметричных барханов и барханных гряд. Их развитие связано с неравномерностью распределения энергии ветрового потока, его «струйчатостью» (например, связанной с особенностями рельефа).

Песчаные формы рельефа получают развитие не только в области пустынь и полупустынь, но и во внепустынных областях - прибрежных зонах океанов, морей, крупных озёр, долинах рек со слабым развитием растительности, на приледниковых равнинах, где также широко распространены рыхлые песчаные отложения. В пределах таких ландшафтов развиты дюны - подвижные аккумулятивно-дефляционные песчаные форма рельефа внепустынных областей. В отличие от развитых в пустынях барханов, у дюн «рога» расположены на наветренной стороне. Пологий склон обращён навстречу ветру и имеет угол наклона 8-20°, заветренный 30-40°. Дюны могут перемещаться в направлении господствующего ветра со скоростью до 10 м в год, в зависимости от массы песка и скорости ветра. Эволюция дюн, при господстве одного или близких направлений ветров, выражается в постепенном переходе от приморских или прирусловых дюнных валов поперечных ветру, в дугообразные, параболические и шпильковидные формы. Такая морфологическая эволюция определяется неравномерностью движения песка в её составе: наиболее активно перемещается центральная часть, в то время как увлажненные и закрепленные растительностью краевые части движутся медленнее (что и определяет обращенность «рогов» в сторону ветра). В районах с конвекционным режимом ветров развиваются округлые валообразные дюны с развеванием из центра к периферии.

Основные формы рельефа песков, связанные с режимом ветров (Федровович, 1983)


I - барханные пески пустынь. А.: пассатный тип (при ветрах одного или близких направлений) : 1 - песчаный щит; 2 - то же, с воронкой (эмбриональный бархан); 3 - серповидный симметричный бархан; 4 - несимметричный бархан; 5 - продольные ветру барханные гряды; 6 - комплексные продольные барханные гряды ("китовые спины");
Б - муссонно-бризный тип (при ветрах противоположных направлений) : 7 - групповые барханы; 8 - простые барханные цепи; 9 - комплексные барханы и барханные цепи;
В - конвекционный и интерференционный типы (при системе равномерных ветров и при ветрах поперечных направлений): 10 - циркульные барханы; 11 - то же, пирамидальные; 12 - то же, скрещенные комплексные.
II - полузаросшие пески пустынь. А: 13 - прикустовые косички; 14 - мелкие грядки; 15 - грядовые пески; 16 - грядово-крупногрядовые пески;
Б: 17 - грядово-лунковые пески; 18 - лунковые пески; 19 - граблевидные поперечные гряды; 20 - поперечные гряды;
В: 21 - ячеистые пески; 22 - крупноячеистые пески; 23 - пирамидальные пески; 24 - решетчатые гряды.
III - дюнные внепустынные пески. А.: 25 - прибрежные валы; 26 - параболические дюны; 27 - шпильковидные дюны; 28 - парные продольные дюны; 29 - комплексные параболические дюны;
Б: 30 - полукруглые мелкие дюны; 31 - то же, крупные; 32 - полукруглые комплексные дюны;
В: 33 - мелкие кольцевидные дюны; 34 -то же, крупные; 35 -комплексные циркульные дюны.
Стрелками показаны преобладающие направления ветров.

Менее распространены корразийные (точнее дефляционно-корразийные, поскольку эти процессы действуют совместно) формы эолового рельефа , возникающие под воздействием динамических ударов ветра и, особенно, под действием ударов мелких частиц, переносимых ветром в ветропесчаном потоке. Ветропесчаный поток движется в приземном слое (до высоты 1,5 - 2 м), поэтому наиболее активно вырабатываются нижние части стоящих на пути ветра препятствий, что приводит к образованию характерных эоловых грибов и карнизов. При попадании твёрдых песчинок в полости и трещины пород происходит их расширение с образованием ниш и пещер. Важным фактором, определяющим особенности корразийного рельефа, является и различие в прочности пород, приводящее к неравномерному их разрушению и образованию причудливых форм. Сочетание указанных факторов иногда приводит к образованию эоловых городов - участки пустыни с многочисленными останцами горных пород, которые благодаря интенсивному физическому выветриванию и механическому воздействию переносимого ветром песка приобретают причудливые формы.

Корразионные формы в пустнынях: следы корразии в песчаниках (Синайская пустыня, Египет) и эоловый гриб (Arbol de Piedra, Боливия)

Видео: Эоловые формы рельефа и ландшафты пустыни

Процессы и формы рельефа, связанные с работой ветра, названы эоловыми в честь древнегреческого бога Эола, повелителя ветров. Эти процессы включают:

вынос ветром результатов выветривания;

обтачивание, выдалбливание поверхности горных пород твердыми частицами, приносимыми ветром;

перенос эолового материала и его аккумуляция.

Процессы эти происходят везде, где есть незакрепленные рыхлые отложения, например, на песчаных берегах рек, но ярче всего работа ветра видна в пустынях -- районах, отличающихся сухостью воздуха и отсутствием растительности. Горные породы там быстро разрушаются из-за сильных колебаний температуры (физическое выветривание). Ветер действует совместно с выветриванием, выносит его продукты и очищает поверхность для дальнейшего разрушения. В некоторых местах поверхность пустыни покрыта слоем крупных обломков, оставшихся на месте после выдувания мелких частиц. Этот слой предохраняет породы от дальнейшего разрушения.

Случается так, что в безмолвной пустыне путник вдруг слышит странные звуки. В древности эти места называли «поющими песками», их боялись, считая, что это духи завлекают путников туда, откуда им не выбраться. Позднее обнаружилось, что звуки издаются песчинками, сползающими по поверхности влажных песков. Чем тоньше сползающий песок, тем тоньше звук. Причина появления этих звуков -- электрические явления, возникающие в песке при сползании. «Поющие пески» есть не только в пустынях, они встречаются по берегам рек и морей.

В пустынях ветер создает такие формы рельефа, как барханы. Это песчаные холмы, имеющие форму полумесяца. Высота их от 5 до 200 метров. Один склон у бархана пологий и длинный. Он всегда обращен в ту сторону, откуда дует ветер. Другой склон -- крутой, с острым гребнем, изогнутый в виде дуги, и обращен он в ту сторону, куда дует ветер. Барханы под влиянием ветра могут передвигаться. Этим они и опасны, так как могут засыпать дома. Это происходит потому, что ветер сдувает песок с пологого склона, который скатывается вниз по крутому склону, и бархан передвигается со скоростью до сотен метров в год. Борьба с барханами заключается в закреплении песков деревьями или кустарниками. По мере роста отдельных барханов они соединяются в барханные цепи. Много барханов в пустынях Средней Азии и в Сахаре.

В местах, где свободного песка мало для образования барханов и достаточно растительности, возникают бугристые или кучевые пески: неподвижные, закрепленные растительностью бугры высотой от 2 до 8 метров.

На песчаных берегах морей, реже рек и озер, образуются дюны. В отличие от бархана, у дюны выпуклую форму имеет не пологий, а крутой склон. Наветренный склон пологий, подветренный -- более крутой. Высота дюн может достигать 30 м и больше. На побережье Балтийского моря есть дюны высотой 60 м, а во Франции высота дюн достигает и 100 м. Перемещаются они со скоростью до 20 метров в год, обычно образуют цепь песчаных холмов параллельно береговой линии на некотором расстоянии от воды. Чтобы остановить движение песка, которое наносит непоправимый вред, засыпая пашни, леса, селения, сажают кусты на пляже, откуда ветер черпает материал для сооружения дюн. Дюны также закрепляют посадками сосны.

Рельефообразующая деятельность ветра заметна не только в песчаных пустынях, но и в каменистых. Здесь выступы твердых пород, отдельные скалы, обрывы под влиянием ветра и при участии выветривания образуют причудливые формы: карнизы, колонны, столбы.

Кроме барханов, дюн, бугристых песков к эоловым отложениям относится и эоловый лесс.

Выветривание - разрушение горных пород. Совокупность сложных процессов качественного и количественного преобразования горных пород и слагающих их минералов, приводящих к образованию продуктов выветривания. Происходит за счёт действия на литосферу гидросферы, атмосферы и биосферы. Если горные породы длительное время находятся на поверхности, то в результате их преобразований образуется кора выветривания. Различают три вида выветривания: физическое (лёд, вода и ветер) (механическое), химическое и биологическое.

Карст - совокупность процессов и явлений, связанных с деятельностью воды и выражающихся в растворении горных пород и образовании в них пустот, а также своеобразных форм рельефа, возникающих на местностях, сложенных сравнительно легко растворимыми в воде горными породами (гипсами, известняками, мраморами, доломитами и каменной солью).

Суффозия (от лат. suffosio - подкапывание) - вынос мелких минеральных частиц породы фильтрующейся через неё водой. Процесс близок к карсту, но отличается от него тем, что суффозия является преимущественно физическим процессом и частицы породы не претерпевают дальнейшего разрушения. Суффозия приводит к проседанию вышележащей толщи и образованию западин (суффозионных воронок, блюдец, впадин) диаметром до 10 и даже 100 метров, а также пещер. Другим следствием может быть изменение гранулометрического состава пород как подверженных суффозии, так и являющихся фильтром для вынесенного материала. Одним из необходимых условий суффозии является наличие в породе как крупных частиц, образующих неподвижный каркас, так и вымывающихся мелких. Вынос начинается лишь с определенных значений напора воды, ниже которых происходит только фильтрация.

Эоловые процессы - получили своё название от греческого бога ветра Эола. Это процессы формирования рельефа под действием ветра. Формируются аккумулятивные формы (например, барханы) и денудационные формы (например, рвы выдувания вдоль дорог в пустыне). Основной действующий фактор - ветропесчаный поток (частицы захватываются с поверхности при скорости ветра свыше 4 м/c).

Конец работы -

Эта тема принадлежит разделу:

Билет №1

Форма и размеры земли земля взаимодействует притягивается гравитационными.. билет внутренние.. билет внешняя геосфера земли..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Билет №1
1. Что изучает инженерная геология? ИНЖЕНЕРНАЯ ГЕОЛОГИЯ - наука о строении, свойствах и динамике геологической среды, её рациональном использовании и охране в связи с инже

Механические свойства грунтов
Для расчетов деформаций, устойчивости грунта и оценки прочности оснований необходимо знать механические характеристики используемых грунтов. Такими свойствами определяется поведение грунтовых масси

Сжимаемость грунтов
Способность грунта уменьшаться в объеме под воздействием уплотняющих нагрузок называют сжимаемостью, осадкой или деформацией. По физическому строению грунт состоит из отдельных частиц различной кру

Сопротивление сдвигу. Прочность грунта
Предельным сопротивлением сдвигу (растяжению) называется способность грунта противостоять перемещению частей грунта относительно друг друга под воздействием касательных и прямых напряжений. Этот по

Водопроницаемость грунтов. Фильтрация
Водопроницаемость характеризуется способностью грунта пропускать через себя воду под действием разности напоров и обуславливается физическим строением и составом грунта. При прочих равных условиях

Форма и размеры земли
Научные данные указывают на то, что Земля образовалась из Солнечной туманности около 4,54 миллиардов лет назад, и вскоре после этого приобрела свой единственный естественный спутник - Луну. Жизньпо

Физические свойства грунтов
Для осушения территории и расположенного на ней памятника, устраивают искусственные сооружения, способствующие понижению уровня грунтовых вод. Такими сооружениями являются дренажи. При их проектиро

Внутренние геосферы земли
Геосферы(от греч. гео - Земля, сфера - шар) - географические концентрические оболочки (сплошные или прерывистые), из которых состоит планета Земля.Выделяются следующи

Дисперсные грунты
Грунт дисперсный - грунт, состоящий из отдельных минеральных частиц (зерен) разного размера, слабосвязанных друг с другом; образуется в результате выветривания скальных грунтов с п

Внешняя геосфера земли
Гидросфера - это водная оболочка Земли. Средняя глубина океана составляет 3850 м, максимальная (Марианская впадинаТихого океана) - 11 022 метра. Около 97 % массы гидросферы составл

Скальные грунты
Скальные грунты относятся к группе твердых. Минеральные частицы скальных грунтов сцементированы между собой веществом, которое заполняет пустоты между частицами и образует твердое тело. Прочность с

Билет №5
1. Строение земной коры, её типы. Океаническая кора состоит главным образом из базальтов. Согласно теории тектоники плит, она непрерывно образуется в срединно-океанических

Тепловой режим земли
Тепловой режим почв - совокупность и последовательность всех явлений поступления, перемещения, аккумуляции и расхода тепла в почве на протяжении определенного отрезка времени (так

Коэффициент фильтрации
Коэффициент фильтрации данного образца грунта может быть определен с помощью прибора, снабженного пьезометрическими трубками. Если нужно ориентировочно определить коэффициент фильт

Методы относительной и абсолютной геохронологии
Ни одни из описанных нами ранее часов не годятся для измерения столь больших промежутков времени и датирования давно минувших событий. Ведь часы, изготовленные человеком, в геологических масштабах

Типы дренажей
Дренаж применяется с целью защиты от проникновения воды в сооружения, сохранения и упрочнения оснований здания, снижения фильтрационного давления наконструкцию. Также дренаж необходим для поддержан

Геохронологическая шкала
Геохронологическая шкала - геологическая временная шкала истории Земли, применяемая в геологии и палеонтологии, своеобразныйкалендарь для промежутков времени в сотни тысяч и миллионы лет.

Депрессионная воронка и радиус влияния
При откачке воды из скважин вследствие трения воды о частицы грунта происходит воронкообразное понижение уровня воды. Образуется депрессионная воронка, в плане имеющая форму, близкую к кру

Горные породы. Структура и текстура горных пород
Структура - 1. для магматических и метасоматических пород, совокупность признаков горной породы, обусловленная степенью кристалличности, размерами и формойкристаллов, способом их с

Фильтрационные горные породы
ФИЛЬТРАЦИОННЫЕ СВОЙСТВА горных пород- свойства, характеризующиепроницаемость горных пород, т. е. их способность пропускать через себя (фильтровать) флюиды (жидкости, газы и их смеси) при наличии на

Магматические горные породы
Магматические горные породы - это породы, образовавшиеся непосредственно из магмы (расплавленной массы преимущественно силикатного состава, образованной в глубинных зонах Земли), в

Основной закон движения подземных вод
Законы движения подземных вод используются при гидрогеологичеких инженерных расчетах водозаборов, дренажей, определении притоков воды к строительным котлованам. Подземные воды передвигаютс

Осадочные горные породы
Осадочные горные породы (ОГП) - горные породы, существующие в термодинамических условиях, характерных для поверхностной части земной коры, и образующиеся в результате переотложения продуктов выветр

Генезис осадочных горных пород
«Осадочные горные породы» объединяют три принципиально различные группы поверхностных (экзогенных) образований, между которыми практически отсутствуют существенные общие свойства. Собственно из оса

Динамика подземных вод
Динамика подземных вод, отрасль гидрогеологии, рассматривающая теоретические основы и методы изучения количественных закономерностей режима и баланса подземных вод. С точки зрения методологических

Метаморфические горные породы
Метаморфические горные породы - горные породы, образованные в толще земной коры в результате изменения (метаморфизма) осадочных и магматических горных пород вследствие изменения физико-химических у

Происхождение подземных вод
Подземные воды образуются разными способами. Просачивание, или инфильтрация, атмосферных осадков и поверхностных вод. Вода проникает в горные породы, доходит до водоупорного слоя и накапли

Тектоническое движение земной коры
Тектонические движения, механические движения земной коры, вызываемые силами, которые действуют в земной коре и главным образом в мантии Земли, приводящие к деформации слагающих кору пород. Тектони

Виды подземных вод по условиям их залегания
Подземные воды - воды, находящиеся в толще горных пород верхней части земной коры в жидком, твёрдом и газообразном состоянии. По условиям залегания подземные воды подразде

Складчатые формы и разрывные нарушения
Тектонические дислокации - это нарушение залегания горных пород под действием тектонических процессов. Тектонические дислокации связаны с изменением распределения вещества в гравитационном поле Зем

Виды воды в горных породах
Основными видами воды в горных породах являются: а) вода в твердом состоянии. Эта вода распространена в зонах многолетнемерзлых пород в виде кристаллов, жил, линз, прослоев льда; б) парооб

Общая характеристика землетрясений
Землетрясения - подземные толчки и колебания поверхности Земли, вызванные естественными причинами (главным образом тектоническими процессами), или (иногда) искусственными процессами (взрывы, заполн

Геологическая деятельность рек, атмосферных осадков, морей и океанов
К подземным водам относятся все воды, находящиеся в порах и трещинах горных пород. Геологическая их деятельность заключается в карстовых явлениях в растворимых горных породах, оползневых явлениях,

Геологическая деятельность моря
Площадь, занятая океанами и морями на земном шаре, почти в 2,5 раза превышает площадь суши. Работа моря представляет собой сложный комплекс взаимодействующих процессов - разрушение горных пород, пе

Интенсивность и магнитуда землетрясений
Магнитуда землетрясения - величина, характеризующая энергию, выделившуюся при землетрясении в виде сейсмических волн. Шкала Рихтера содержит условные единицы (от 1 до 9,5) – магнитуды, кот

, археологией , почвоведением , планетологией , а также со строительством.

Формы рельефа выделяют согласно их генезису и размеру. Рельеф формируется под влиянием эндогенных (тектонических движений , вулканизма и кристаллохимического разуплотнения вещества недр), экзогенных (Денудация) и космогенных процессов.

Практическое применение геоморфологии состоит в инженерной оценке рельефа при строительстве, измерении влияния изменения климата , прогнозе и смягчении последствий катастрофических явлений (оползней , обвалов и др.), контроль за водообеспеченностью территорий, береговая защита.

Палеогеоморфология - раздел геоморфологии, изучающий облик поверхности Земли в определённые периоды истории.

История [ | код ]

Основателем геоморфологии был китайский учёный и государственный деятель Шэнь Ко (1031-1095), наблюдавший за раковинами морских животных, находящихся в геологическом слое горы, расположенной за сотни миль от Тихого океана . Заметив слой раковин двухстворчатых моллюсков, движущийся в горизонтальной протяжённости вдоль сечения обрыва, он высказал предположение, что этот обрыв ранее являлся морским побережьем, которое по прошествию веков сместилось на сотни километров. Он сделал вывод, что форма земли изменилась и сформировалась вследствие почвенной эрозии и отложении наносов, наблюдая за эрозией гор вблизи Вэньчжоу . К тому же он выдвинул теорию о постепенном изменении климата с течением веков, так как древние останки бамбука были найдены в сухой северной климатической зоне Янчжоу , ныне провинция Шэньси . Однако пионерные работы Шэнь Ко не оказали влияния на развитие геоморфололии как научной дисциплины в других странах, так как об этих взглядах китайского учёного до XX века ничего не было известно.

Основоположником современной геоморфологии в БСЭ назван немецкий геолог Фердинанд фон Рихтгофен . На основе материалов собственных многолетних экспедиционных исследований он «собрал огромный материал, позволивший ему установить глубокую внутреннюю связь геологического строения с рельефом, климатом, растительностью, животным миром и хозяйственной деятельностью человека».

Рихтгофен определил географию, как науку о компонентах земной поверхности в их взаимодействии, что позволило взглянуть на развитие рельефа, как на динамическую систему, изменяющуюся во времени и пространстве.

Рихтгофен впервые предложил классификацию географических наук, разделив их на физическую географию, биогеографию и антропогеографию. В составе физической географии он выделил новую научную дисциплину, которую определил как геоморфологию*

В 1886 году Рихтгофен предложил классификацию форм рельефа на основе его генезиса, что предопределило будущие работы Уильяма Мориса Дейвиса и Вальтера Пенка .

Геоморфологическая модель, предложенная Уильямом Морисом Дейвисом , между 1884 и 1899 годом, носила название географический цикл или цикл эрозии . Этот цикл был привязан к принципу актуализма , который был сформулирован Джеймсом Хаттоном . Относительно впадин, этот цикл опирался на последовательность, с которой реки могут вырезать впадины все более и более глубокие, но затем береговая эрозия в конечном счёте снова выравнивает территорию, теперь уже понижая её. Цикл может снова начать поднимать территорию. Эта модель сегодня рассматривается со значительными упрощениями для более удобного использования на практике.

Возраст океанского дна. Красный цвет - наиболее молодой

Процессы [ | код ]

Современная геоморфология сосредотачивается на количественном анализе взаимосвязанных процессов, таких как роль солнечной энергии , скорость круговорота воды и скорость движения плит для вычисления возраста и ожидаемого будущего отдельных форм рельефа. Использование точной вычислительной техники даёт возможность непосредственно наблюдать такие процессы, как эрозия, в то время как ранее можно было основываться на предположениях и догадках. Компьютерное моделирование также очень ценно для тестирования определённой модели территории со свойствами, которые схожи с реальной территорией.

Рельеф формируется в результате взаимодействия эндогенных и экзогенных процессов.

Эндогенные процессы [ | код ]

Тектонические движения [ | код ]

Тектонические (вертикальные и горизонтальные) движения создают наиболее крупные формы рельефа (мегарельеф). Например, большие равнинные территории и горные страны.

Магматизм [ | код ]

Если реки текут по равнине, то они обычно увеличиваются в размерах, объединяясь с другими реками. Сеть рек таким образом образует речную систему , часто реки являются дендрирующими (ветвящимися), но могут приобретать и другие формы, которые зависят от конкретной поверхности и геологического строения.

Ледниковая геоморфология [ | код ]

Ледники являются важной силой, преобразующей рельеф. Постепенное движение льда вниз является причиной корразии подстилающих горных пород. Корразия производит тонкий налёт, называемый ледяным порошком. Обломки пород, переносимые внутри ледникового покрова и в его основании, называются основной мореной .

Эоловые процессы [ | код ]

Получили своё название от греческого бога ветра Эола. Это процессы формирования рельефа под действием ветра. Формируются аккумулятивные формы (например, барханы) и денудационные формы (например, рвы выдувания вдоль дорог в пустыне). Основной действующий фактор - ветропесчаный поток (частицы захватываются с поверхности при скорости ветра свыше 4 м/c).

Береговые процессы [ | код ]

Это формирование рельефа в прибрежной зоне морей, озёр и т. д. Формируются аккумулятивные и денудационные формы. Пример аккумулятивных - пляжи, а денудационных - клиф .

Биогенные процессы [ | код ]

Это формирование рельефа под воздействием живых организмов. Примеры: тропинки в лесах, искори , термитники, плотины, в тропических морях- коралловые рифы (окаймляющие, барьерные и атоллы).

Антропогенные процессы [ | код ]

Изменение рельефа человеком. Данный процесс наблюдается при открытой добыче полезных ископаемых в карьерах, дорожном и гидротехническом строительстве, эксплуатации городов и промышленных центров, сельскохозяйственных работах.

Космогенные процессы [ | код ]

Характерны для планет Земной группы, но не являются основными факторами рельефообразования. Пример формы рельефа: ударный кратер (первым к таковым отнесён

Геоморфологические процессы и формы рельефа, связанные с деятельностью ветра называются эоловыми . Они происходят чаще в аридных странах, в пустынях и полупустынях умеренных широт. Могут проявляться эоловые формы рельефа и в речных долинах при интенсивном поступлении песчаного аллювиального материала.

Выделяют следующие виды эоловых процессов: дефляция – процесс выдувания или развевания рыхлого грунта; корразия – процесс обтачивания, шлифования, высверливания и разрушения твердых пород обломочным материалом, перемещающимся под действием ветра, перенос эолового материала и его аккумуляция.

Формы дефляционного и корразионного рельефа

В результате корразии образуются своеобразные выработанные формы – эоловые «каменные грибы », «каменные столбы ».

Под воздействием ветра образуются дефляционные котловины, вытянутые отрицательные формы рельефа длиной несколько сотен метров.

Вредный процесс дефляции – ветровая эрозия почв. Возникает при небрежной обработке сельскохозяйственных земель.

Эоловые аккумулятивные формы . В результате эоловой аккумуляции образуются разнообразные формы рельефа. В зависимости от их ориентирования относительно направления ветра их разделяют на продольные и поперечные.

Дюны относятся к продольным формам (пустыни, берега морей, рек).

Песчаные гряды – более крупные продольные формы.

Барханы – поперечные формы. Это эоловые формы имеющие в плане очертания полумесяца – различных размеров (высотой до 40 м и шириной 20-30 м).

Выделяются также древние эоловые формы, в настоящее время закрепленные растительностью.

При выраженном преобладании ветров одного направления на берегах морей и рек формируются настоящие продольные дюны .

4.3. Флювиальные процессы и формы

Поверхностные текучие воды – один из важнейших факторов преобразования рельефа Земли.

Совокупность геоморфологических процессов, осуществляемых текучими водами, называются флювиальными .

Под текучими водами понимают все воды, стекающие по поверхности суши: дождевые, талые снеговые, воды временных и постоянных ручьев и речек, малых и больших рек, т.е. воды поверхностного стока. Стекающая по поверхности Земли вода обладает кинетической энергией и способна производить работу. Величина работы тем больше, чем больше масса воды, уклон и скорость течения. Выделяют три составляющих работы текучими водами: разрушение горной породы (гипергенез, эрозия), перенос и переотложение (аккумуляция).

По характеру и результатам деятельности поверхностный сток подразделяется на три вида: плоскостной склоновый сток , сток временных русловых потоков и сток рек .

Плоскостной склоновый сток возникает при сильных дождях на пологих ровных склонах в виде тонкого слоя воды, движущегося по всей поверхности, смывающего рыхлый материал и откладывающего у подножия склона. Отложенный водным потоком материал носит название делювия . Делювиальные образования – шлейфы – выполаживают склоны и изменяют их профиль.

Временные русловые потоки проявляются в равнинных и горных условиях. Результатом их действия являются овраги на равнинах и сели в горах. Образование оврага на склоне, поверхность которого неровно обнажена и имеет общее понижение рельефа в сторону ближайшего водотока, под воздействием атмосферных осадков проявляется в виде линейного размыва (эрозия ), называемого промоиной. Продолжение размыва и повышение гидростатического давления на грунт, увеличивающихся массы и скорости воды приводит к образованию «висячего» оврага и дальнейшему развитию его по достижении базиса эрозии (дно ближайшего водостока). Рост оврага будет продолжаться до тех пор, пока гидродинамическая сила атмосферного водного потока будет способна выполнять работу по размыву и транспортировке каменного материала. Продольный профиль потока (дна оврага), при котором достигается относительное равновесие между движущей силой воды и сопротивлением русла называется профилем равновесия. Рост овражной сети в этот период переходит в стадию затухания.

При топографических съемках и изучении овражной эрозии необходимо обращать внимание и отражать на картах и планах: характер выражения бровок оврага в рельефе (резко выраженные, слабо выраженные); характер перехода выраженных перепадов по продольному профилю оврага (быстро отступающие к верховью, медленно, не сохранились); крутизну и обнаженность склонов: наличие гравитационных процессов (осыпей, оползней, вывалов); форму поперечного профиля оврага (резкий V – образный, плавный U – образный), угол схода склонов у дна оврагов, расстояние между подошвами противоположных склонов, наличие овражного аллювия и растительности.

Деятельность временных нерусловых потоков в горах называется селями (бурный поток).

Геологические процессы и явления, вызываемые стоком постоянных водотоков, проявляются как в самой речной системе-реке с ее притоками, так и в речном бассейне – площади речной системы. У большинства холмистых и долинных речных систем можно выделитьдолину реки – углубление, где течет река. В самой долине выделяют: русло реки – часть долины, заполненная водой при низком (меженном) уровне воды, пойму – часть реки долины, заполняемую при высоком (паводковом) уровне воды и террасы — незатопляемые части долины (рис.11).

Кинетическая энергия руслового потока и произведенная им работа, равная половине произведения массы воды на квадрат скорости течения, в основном расходуется на передвижение в русле рыхлого материала и на разрушение горных пород (эрозию). Если кинетическая энергия больше веса поступающего в русло рыхлого материала, то скорость потока при данной массе воды становится размывающей; если кинетическая энергия равна весу отбитого материала, то происходит только перенос этого материала и, наконец, если кинетическая энергия меньше веса отбитого материала, то происходит аккумуляция последнего. Эти зависимости в действительности сложны, т.к. массы воды и скорости течения в реках распределяются неравномерно и постоянно меняются. Здесь сказывается взаимодействие потока с руслом, изменение режима рек в связи с половодьями, паводками и межени, климатом, различиями пород, размываемых реками, тектоническими движениями и прочими.

Воздействие водного потока на русло проявляется в образовании излучин и расширении долины реки и в углублении дна русла до уровня продольного профиля равновесия, соответствующего положению базиса эрозии. Таким образом, в эродирующей работе реки различают боковую и глубинную эрозию.

В эрозионной работе рек выделяются четыре фазы.

1. Фаза глубинной эрозии вызывается нарушением равновесия в связи с понижением базиса эрозии (или повышением бассейна реки относительно базиса эрозии). Фаза продолжается до тех пор, пока река не выработает нормального уклона, нарушенного понижением базиса эрозии. Долина при этом имеет клинообразную или каньонообразную форму.

2. Фаза боковой эрозии частично перекрывает первую фазу и в основном начинается после ее окончания. Происходит расширение вновь углубленной долины до размеров, соответствующих речной многоводности, в пределах которой могут свободно перемещаться извилины русла. Поперечное сечение долины приобретает чаше- или корытообразную форму.

3. Фаза наполнения наносов (заполнение долины аллювием) протекает одновременно со второй фазой, но заканчивается позднее, когда река, вследствие образование излучин, приобретает определенную нормальную для нее длину и уклон, которые могут изменяться только в связи с новыми колебаниями базиса эрозии.

4. Последняя, четвертая фаза покоя или переноса , завершает развитие долины, вызванное изменением базиса эрозии. В этой фазе работа реки заключается в транспортировка рыхлого материала и выноса его за пределы водного бассейна. Водный поток медленно протекает по широкой и плоской долине. Извилистое русло рек возникает вследствие винтообразного распределения скоростей течения в потоке.

Выделяют три стадии переноса донных отложений.

1. При медленном течении происходит перемещение донных мелких зерен с повышенных участков дна в пониженные. Речное дно ровное, иногда с появлением песчаной ряби.

2. При увеличении скорости (скорость водного течения в 2-2,5 раза больше, чем скорость, приводящая частицы рыхлых пород в движение) в русле реки образуются гряды (заструги), которые перемещаются вниз по течению.

3. При скорости течения примерно в четыре раза превышающей скорость движения воды, необходимую для начала переноса наносов данной крупности, происходит массовое движение верхнего слоя отбитых пород.

Одновременно с эрозией и переносом обломочного материала осуществляется его отложения (аккумуляция). Речные отложения, принесенные водным потоком, называются аллювием . По литологическому составу аллювия выделяют три фации: русловая, пойменная, старичная.

Сложные гидродинамические особенности потока и многие другие причины в форме боковой эрозии приводят к выработке извилистого русла и образованию излучин. Последнее приводит к отложению руслового аллювия у берега противоположного подмываемому.

Накопление пойменного аллювия происходит в результате затопления поймы паводковыми водами и, как следствие, отложение рыхлых наносов в виде прируслового вала у кромки русла.

Рельеф поймы связан с неравномерным отложением аллювия, обусловленным различными скоростями водного потока, препятствиями, встречающимися на пути движения воды, в половодье, и другими причинами. Поверхность поймы осложняют старицы – отторжения от главного русла излучины (меандры) затопленные наносами – старичным аллювием.

Речные террасы отражают различные этапы в развитии реки. Различают три этапа террас:

– эрозионные – сложены коренными породами;

– аккумулятивные – сложенные наносами;

– цокольные – (эрозионно-аккумулятивные) – сложены коренными породами и перекрытые наносами.

Распространенным геологическим процессом является перехват и обезглавливание рек. В основе этого явления лежит эрозия рек и связано оно с размывом одной рекой водораздела соседнего водного бассейна и обезглавливанию другой реки.


Source: StudFiles.net