Водяной пар — газообразное состояние воды. Вода, водяной пар и их свойства Как называется переход водяной пары в воду

Какие еще вещества, кроме газов, входят в состав воздуха?

1. Распространение водяного пара в воздухе. После дождя вы все наблюдали, как крыши домов, стволы деревьев и листья намо­кают, везде образуются лужи. После рассеивания туч появляется Солнце, и все вокруг высыхает. Куда исчезает бесследно дождевая вода? Она превращается в водяной пар. Так как он бесцветен, как воздух, то мы его не видим.
В любом воздухе содержится определенное количество воды в виде водяного пара. Частицы воды в виде пара содержатся также в составе воздуха комнаты. Заметить это нетрудно. Зимой обратите внимание на металлические предметы (замок портфеля, коньки и др.), занесенные домой с улицы. Через некоторое время они начинают «потеть». Это значит, что теплый воздух в комнате, соприкаса­ясь с холодным предметом, выделяет капельки воды.
Влага земной поверхности испаряется из почвы, болот, рек, озер, морей и океанов в виде водяного пара в атмосферу. Большое коли­чество воды (86%) испаряется из океанов и морей.
В природе водяной пар находится в непрерывном круговороте. Водяной пар, поднимаясь над океанами и поверхностью суши, попа­дает в атмосферу. Воздушные течения уносят его с собой в другие места. Водяной пар, в свою очередь, охлаждаясь, превращается в об­лака, и в виде осадков он снова возвращается на поверхность Земли.

2. Зависимость водяного пара в воздухе от температуры. Со­держание водяного пара в воздухе зависит от состояния испаряе­мой поверхности и температуры. Над океаном в воздухе водяного пара много, а над сушей - мало. Кроме того, чем выше температу­ра, тем больше содержание водяного пара в воздухе.

Как видно из таблицы, воздух может содержать водяной пар со­ответственно при определенной температуре. Если воздух содержит такое количество водяного пара, какое он при данной температуре может содержать, то его называют насыщенным. Например, для на­сыщения 1м3 воздуха водяным паром при температуре +30°С необ­ходимо 30 г водяного пара. Если количество водяного пара состав­ляет всего 25 г, то воздух будет ненасыщенным, сухим.
При повышении температуры насыщенный воздух становится не­насыщенным. Например, для насыщения 1м3 воздуха при темпера­туре 0°С необходимо 5 г водяного пара. Если температура воздуха поднимается до +10°С, то для насыщения воздуха не будет хватать 4 г водяного пара.

3.Абсолютная и относительная влажность. Содержание водяного пара в воздухе определяется абсолютной и относительной влажностью.
Абсолютная влажность - количество водяного пара в граммах в 1 м3 воздуха (г/м3).
Относительная влажность - отношение количества влаги, имеющейся в 1 м3 воздуха, к тому количеству водяного пара, который насыщает воздух при данной температуре. Относительная влажность выражается в процентах.
Относительная влажность показывает степень насыщения возду­ха водяным паром. Например, 1 м3 воздуха может содержать 1 г водяного пара при температуре -20°С. В воздухе содержится 0,5 г влаги. Тогда относительная влажность равна 50%. При насыщении воздуха водяным паром относительная влажность достигает 100%.

4.Конденсация водяного пара. После насыщения воздуха водя­ным паром, остальное количество пара превращается в капельки воды. Если в 1 м3 воздуха при температуре -10°С вместо 2 г водяно­го пара собралось 3 г, то лишний 1 г пара превращается в капельки воды. Когда понижается температура насыщенного воздуха, он не может удержать такое количество водяного пара. Например, для на­сыщения 1 м3 воздуха при +10°С нужно 9 г водяного пара. Если тем­пература понизится до 0°, то воздух вмещает только 5 г водяного пара, лшшние 4 г превращаются в капельки воды.
При определенных условиях переход водяного пара в жидкое сос­тояние (капельки воды) называют конденсацией (По-латыни конденсацио - сгущение). При температуре 0°С водяной пар перехо­дит в твердое состояние, т.е. превращается в кристаллики льда.

5. Измерение влажности воздуха. Относительная влажность из­меряется с помощью прибора - волосяного гигрометра (по-гречески гигрос - влажный, метр - мера). В этом приборе ис­пользуется свойство волоса человека, удлиняющегося при повыше­нии влажности. Когда влажность уменьшается, волос укорачивает­ся. Волос крепится на стрелку циферблата, при удлинении или уко­рачивании волоса стрелка, двигаясь вдоль циферблата, показывает относительную влажность в процентах (рис. 54).

Рис. 54. Волосяной гигрометр.


Гигрометр так же, как термометр, помещается в метеорологичес­кую будку.
На метеостанциях влажность воздуха определяется на более точ­ных приборах и с помощью специальных таблиц.

1. Почему над экватором содержание водяного пара в воздухе больше, чем в умерен­ном поясе?

2. Что происходит с водяным паром в воздухе с изменением высоты?
3. Температура воздуха +10°С. Абсолютная влажность 6 г/м3. При каких условиях произойдет насыщение воздуха водяным паром? (Решите 2 способами.)
4. Ознакомьтесь со строением гигрометра и измерьте относительную влажность.

5*. Температура воздуха равна +30°С, а абсолютная влажность - 20 г/м3. Вычислите относительную влажность.

  • Водяной пар - газообразное агрегатное состояние воды. Не имеет цвета, вкуса и запаха. Водяной пар - в чистом виде или в составе влажного газа, - находящийся в термодинамическом равновесии с поверхностью влажного вещества, называют равновесным водяным паром.

    Содержится в тропосфере.

    Образуется молекулами воды при её испарении.

    При поступлении водяного пара в воздух он, как и все другие газы, создаёт определённое давление, называемое парциальным. Оно выражается в единицах давления - паскалях.

    Водяной пар может переходить непосредственно в твёрдую фазу (десублимация) - в кристаллы льда. Количество водяного пара в граммах, содержащегося в 1 кубическом метре, называют абсолютной влажностью воздуха.

Связанные понятия

Пло́тность во́здуха - масса газа атмосферы Земли на единицу объема или удельная масса воздуха при естественных условиях. Плотность воздуха является функцией от давления, температуры и влажности. Обычно, стандартной величиной плотности воздуха на уровне моря в соответствии с Международной стандартной атмосферой принимается значение 1,2250 кг/м³, которая соответствует плотности сухого воздуха при 15 °С и давлении 101330 Па.

Горе́ние - сложный физико-химический процесс превращения исходных веществ в продукты сгорания в ходе экзотермических реакций, сопровождающийся интенсивным выделением тепла. Химическая энергия, запасённая в компонентах исходной смеси, может выделяться также в виде теплового излучения и света. Светящаяся зона называется фронтом пламени или просто пламенем.

Жи́дкий ге́лий - жидкое агрегатное состояние гелия. Представляет собой бесцветную прозрачную жидкость, кипящую при температуре 4,2 К (для изотопа 4He при нормальном атмосферном давлении). Плотность жидкого гелия при температуре 4,2 К составляет 0,13 г/см³. Обладает малым показателем преломления, из-за чего его трудно увидеть.

Газ , или газообразное состояние (от нидерл. gas, восходит к др.-греч. χάος (háos)) - одно из четырёх основных агрегатных состояний вещества, характеризующееся очень слабыми связями между составляющими его частицами (молекулами, атомами или ионами), а также их большой подвижностью. Частицы газа почти свободно и хаотически движутся в промежутках между столкновениями, во время которых происходит резкое изменение характера их движения.

Пар-жидкость-кристалл или ПЖК (в английской литературе - vapor-liquid-solid - VLS)) - механизм роста одномерных структур, таких как нановискеры в процессе химического осаждения из газовой фазы. Рост кристалла вследствие осаждения из газовой фазы обычно протекает очень медленно. Однако возможно введение на поверхность капель катализатора, способного адсорбировать вещество из газа до состояния пересыщенного расплава, из которого и будет происходить его кристаллизация на подложку. Таким образом, физические...

Кондициони́рование во́здуха - автоматическое поддержание в закрытых помещениях всех или отдельных параметров воздуха (температуры, относительной влажности, чистоты, скорости движения воздуха) с целью обеспечения оптимальных климатических условий, наиболее благоприятных для самочувствия людей, ведения технологического процесса, обеспечения сохранности.

Пиролизный котёл - разновидность твердотопливного, как правило, водогрейного котла, в котором топливо (например, дрова) и выходящие из него летучие вещества сгорают раздельно. Обычно как синоним употребляется название газогенераторный котёл, изредка делают различие. Фактически, пиролиз (разложение и частичная газификация под действием нагревания) происходит при любом способе сжигания твёрдого органического топлива.

Пароочиститель (иногда парогенератор) - прибор, используемый для чистки и дезинфекции поверхностей и материалов, устойчивых к воздействию горячего пара.

Благоро́дные га́зы (также ине́ртные или ре́дкие га́зы) - группа химических элементов со схожими свойствами: при нормальных условиях они представляют собой одноатомные газы без цвета, запаха и вкуса с очень низкой химической реактивностью. К благородным газам относятся гелий (He), неон (Ne), аргон (Ar), криптон (Kr), ксенон (Xe) и радиоактивный радон (Rn). Формально к этой группе также причисляют недавно открытый оганесон (Og), однако его химические свойства почти не исследованы.

Абсо́рбция (лат. absorptio от absorbere - поглощать) - поглощение сорбата всем объёмом сорбента. Является частным случаем сорбции.

Холодильник (химия) - лабораторный прибор для конденсации паров жидкостей при перегонке или нагревании (кипячении). Используют для отгонки растворителей из реакционной среды, для разделения смесей жидкостей на компоненты (Фракционная перегонка) или для очистки жидкостей перегонкой.

Упоминания в литературе (продолжение)

Парообразная вода – это водяной пар порового пространства почвы. Относительная влажность почвенного воздуха почти всегда близка к насыщению ее парами воды, и уже при влажности почвы свыше ее максимальной гигроскопичности практически равна 100 %. Всякое понижение температуры приводит к конденсации парообразной воды и переводу ее в жидкое состояние, повышение температуры приводит к обратному процессу. Передвижение парообразной воды в поровом пространстве почвы обусловливается упругостью пара (от участков с высокой упругостью водяного пара к участкам с более низкой упругостью), а также вместе с током воздуха. Парообразная вода недоступна растениям, но ее наличие в почве важно в том плане, что она препятствует просушиванию корней растений.

Активация углей может осуществляться посредством обработки водяным паром или специальными химическими реагентами. Активация водяным паром проводится при температуре 800–1000 °C в строго контролируемых условиях. При этом на поверхности пор происходит химическая реакция между водяным паром и углем, в результате чего образуется развитая структура пор и увеличивается внутренняя поверхность угля. С помощью такого процесса можно получать угли, обладающие различными адсорбционными свойствами.

В итоге почти весь водяной пар из состава вулканических газов должен был конденсироваться, формируя гидросферу. В этот первичный океан переходили, растворяясь в воде, и другие компоненты вулканических газов – бо́льшая часть углекислого газа, «кислые дымы», окиси серы и часть аммиака. В результате первичная атмосфера (содержащая – в равновесии с океаном – водяные пары, CO2, CO, CH4, NH3, H2S, инертные газы и являющаяся восстановительной) оставалась тонкой и температура на поверхности планеты не отклонялась сколь-нибудь заметно от точки лучистого равновесия, оставаясь в пределах существования жидкой воды. Это и предопределило одно из главных отличий Земли от других планет Солнечной системы – постоянное наличие на ней гидросферы.

2) относительную влажность (процентное отношение фактического содержания водяного пара в 1 м3 воздуха к потенциальному при данной температуре). Когда водяные пары в атмосфере становятся очевидными, то их можно наблюдать в виде:

При диссоциации водяных паров (они проникают в зону дуги из воздуха, флюса и др.), которая развивается в зоне сварки под воздействием высокой температуры, образуется еще один газ – водород. Он может быть и молекулярным, и атомарным, причем последний хорошо растворяется в расплавленном металле, особенно при повышении температуры. Когда она поднимается до 2400 °C, количество водорода составляет 43 см3 на 100 г металла (это максимальное значение).

Влажность воздуха, различают абсолютную и относительную влажность воздуха. Для характеристики абсолютной влажности пользуются величиной парциального давления водяного пара в воздухе, называемой упругостью водяного пара. Предельное значение упругости соответствует максимально возможному насыщению воздуха водяным паром. Чем выше температура, тем больше будет значение предельной упругости.

Необходимо отметить, что в атмосферном воздухе, помимо газов, имеется определенное количество водяного пара . То количество воды, которое содержится 1 м3 воздуха, принято определять как абсолютную влажность. Единицей ее измерения является г/м3.

Возможно, первая атмосфера Земли содержала много водорода, метана и аммиака, напоминая состав атмосферы внешних планет Солнечной системы. Со временем к этим элементам добавились водяной пар и углекислый газ, выделяющиеся при дегазации вновь образовавшихся скальных пород. Вода вначале оставалась в виде пара, пока жар атмосферы не позволял ей конденсироваться. С другой стороны, столь же вероятно, что первичная атмосфера из водорода, метана и аммиака была по большей части «сдута» излучением Солнца вскоре после своего образования и первая стабильная земная атмосфера сформировалась преимущественно из углекислого газа и водяного пара, выделившихся из недр через фумаролы и вулканы. В любом случае вода, конденсировавшаяся и выпадавшая в виде дождя, когда Земля остыла, несомненно содержала молекулы аммиака, метана и водорода, растворенные в ней. Когда этот раствор подвергался высокоэнергетическому воздействию вроде ударов молний или ультрафиолетового излучения Солнца, могли происходить химические реакции, способствовавшие синтезу сложных органических соединений, таких как аминокислоты, – материала, из которого состоят живые существа.

Ученые-биохимики решили проверить эту гипотезу и в середине прошлого века впервые попытались поставить ряд экспериментов по самозарождению жизни. Они построили лабораторную установку из двух сообщающихся сосудов, в одном из которых была вода, а в другом – модель атмосферы первобытной Земли из смеси газов: водорода, метана, аммиака и водяных паров . Когда ученые создали в такой атмосфере миниатюрную грозу, пропустив серию электрических разрядов, вода в сосуде побурела, а ее химический анализ показал, что там образовалось множество «кирпичиков» живой материи – аминокислот и других органических молекул. При продолжительной циркуляции и непрерывном воздействии электрических разрядов смесь порозовела, а еще через некоторое время потемнела и поменяла цвет на грязновато-красный. Детальные анализы показали, что в ней появились аминокислоты, представляющие собой элементы белковых молекул.

Объем водяных паров в продуктах сгорания складывается из нескольких составляющих: водяного пара, образовавшегося при сгорании водорода топлива, испарившейся влаги топлива и, наконец, влаги, внесенной в топку вместе с теоретически необходимым количеством воздуха:

Вода, как все мы прекрасно знаем, может иметь газообразное состояние, и такая летучая вода называется паром. В воздухе всегда находится определенное количество водяных паров . Взяли мы, к примеру, один кубический метр воздуха, исследовали и выяснили, что в этом кубическом метре присутствует 10 г воды. Вот это количество воды и называется абсолютной влажностью воздуха. Т. е. абсолютная влажность исследуемого воздуха равна 10 г/м3. А может быть 20 г/м3? Теоретически может, но ответить на этот вопрос однозначно нельзя.

Если теплый воздух насыщен водяными парами , то самое незначительное понижение температуры сейчас же вызывает осаждение этих паров в виде росы. «Точка росы» – температура, при которой водяные пары превращаются в капли – тем ближе подходит к температуре самого воздуха, чем больше его влажность.

Еще одним минусом при таком развитии событий является нарушение естественной диффузии водяных паров , что в холодное время вызовет конденсацию пара на внутренней поверхности капитальной стены. Так как влаге уходить будет некуда, то это приведет к тому, что конструкция начнет отсыревать, на ее поверхности и в толще станут развиваться микроорганизмы. В результате санитарно-гигиенические показатели конструкции резко ухудшатся.

Чем выше температура воздуха, тем большее количество паров требуется для его полного насыщения. В гигиеническом отношении наиболее важное значение имеет относительная влажность. Она дает представление о степени насыщения воздуха водяными парами и свидетельствует о возможности отдачи тепла путем испарения. В условиях дефицита влажности воздуха более интенсивно будет протекать отдача тепла при потоотделении.

Впрочем, как я уже говорил вам, у меня есть некоторое количество балласта, который в случае экстренной надобности может дать возможность подняться еще скорее. Клапан, находящийся на верхнем полюсе шара, является только предохраийтельным клапаном. Воздушный шар неизменно содержит одно и то же количество водорода. Подъем и снижение, повторяю, происходит только благодаря изменению его температуры. А теперь, господа, я хочу сообщить вам еще одну подробность: при сгорании водорода и кислорода на конце горелки получаются водяные пары ; поэтому я снабдил нижнюю часть цилиндрического ящика трубкой с клапаном, действующим при давлении в две атмосферы; следовательно, когда пар достигает такого давления, он сам автоматически выходит наружу.

Водород в зоне сварки образуется во время диссоциации водяных паров при высоких температурах дуги. Пары воды попадают в зону дуги из влаги электродного покрытия или флюса, ржавчины и окружающего воздуха. Молекулярный водород распадается на атомарный, который хорошо растворяется в расплавленном металле. Растворимость водорода в железе в значительной степени зависит от температуры металла. При температуре 2400 °С насыщение достигает максимального значения (43 см3 водорода на 100 г металла). При высоких скоростях охлаждения металла водород переходит из атомарного состояния в молекулярное, но полностью выделиться из металла не успевает. Это вызывает пористость и мелкие трещины. Снижение влияния водорода на качество сварного шва достигается сушкой и прокалкой материалов сварки, очисткой от ржавчины и защитой зоны дуги.

Процентное соотношение в воздухе кислорода, углекислого газа, азота, водяных паров , его температура, влажность, а также атмосферное давление, наличие ветра, осадков, пыли оказывают немалое влияние на организм собаки.

Атмосфера состоит на 78% из азота и на 21% из кислорода, оставшийся 1% приходится на все остальные вещества: инертные и другие газы (в том числе углекислый газ СО2 – 0,03%), водяной пар и прочие аэрозоли (так называемые пылевые и жидкие частицы, находящиеся во взвешенном состоянии). Этот состав практически не изменяется до высоты в несколько десятков километров. Современная атмосфера является в значительной степени продуктом живого вещества биосферы (слоя живого вещества, по В.И. Вернадскому – «пленка жизни»). Полное обновление кислорода планеты живым веществом происходит за 5200–5800 лет. Вся масса кислорода усваивается живыми организмами приблизительно за 2 тыс. лет, а вся углекислота – за 300–395 лет.

Наиболее вероятными претендентами на роль древних парниковых газов являются углекислый (СО2), метан (СН4), аммиак (NН3), закись азота (N2О), карбонилсульфид (OСS), а также, косвенно, азот (N2). (Высокое парциальное давление азота расширяет адсорбционные зоны молекул СО2, СН4 и водяного пара .) NН3, которому отводили роль парникового газа Саган и Мьюллен, а также N2О и OСS из перечня можно сразу вычеркивать: эти газы легко разрушаются ультрафиолетовым излучением и накопиться в атмосфере в достаточно больших количествах не могут. А вот N2, СО2 и СН4 не только устойчивы, но и выделяются в значительных объемах при дегазации мантии (подводные и наземные вулканы, метаморфизм) и в процессе жизнедеятельности различных микробов и, следовательно, могли насытить архейскую атмосферу. Чтобы создать ощутимый парниковый эффект в архейском эоне, правда, понадобилось бы не менее 3 % двуокиси углерода (почти в 100 раз больше, чем ныне). Однако при таких концентрациях этот газ сконденсировался бы в облака, отражающие солнечные лучи, и по мере остывания планеты оседал бы снежными шапками на полюсах, как на Марсе. Кроме того, при высоких концентрациях углекислого газа (?1 %) ультрафиолетовые лучи частично поглощались бы его молекулами, а частично рассеивались, и независимое от массы фракционирование стабильных изотопов серы не происходило бы. Да и сидерита в архейских палеопочвах почти нет, а этот карбонат железа просто-таки обязан был накапливаться при высоком парциальном давлении СО2.

Для снижения влажности углекислого газа рекомендуется установить баллон вентилем вниз и после отстаивания в течение 15 мин осторожно открыть вентиль и выпустить из баллона влагу. Перед сваркой необходимо из нормально установленного баллона выпустить небольшое количество газа, чтобы удалить попавший в баллон воздух. Часть влаги задерживается в углекислоте в виде водяных паров , ухудшая при сварке качество шва. Кроме того, при выходе из баллона, от резкого расширения происходит снижение температуры углекислоты и влага, отлагаясь в редукторе, забивает каналы и даже полностью закрывает выход газа. Для предупреждения замерзания влаги между баллоном и редуктором устанавливают электрический подогреватель.

Не менее повезло людям и с поведением воды при испарении. Вода при испарении (пар) превращается практически в простой газ, плотность которого меньше плотности воздуха, и поэтому вода способна насыщать своими молекулами земную атмосферу, создавая комфортные для человека погодные условия. Если бы водяной пар был заметно тяжелее воздуха, то поверхность всей Земли покрывал бы вечный слой тумана. Жизнь на такой планете трудно себе представить.

Классическим примером такого обмена служит круговорот воды в природе. Благодаря способности к фазовым переходам, вода присутствует в климатической системе в разных ипостасях. Водяной пар и мельчайшие облачные частицы являются «полномочными представителями» воды в атмосфере, снег и лед выполняют ту же роль в криосфере, гидросфера по самой своей сути – царство воды, даже тела многих живых организмов в значительной степени (человека – на 70–80 %) состоят из воды. Каждый фазовый переход сопровождается потреблением или выделением тепла (энергии); при этом общая масса воды во всей системе сохраняется, но происходит перераспределение масс в ее составляющих (рис. 5 и рис. 1 цветной вклейки).

Для сушки жидких продуктов на горячей поверхности в тонком слое применяется кондуктивный способ. В данном случае горячей поверхностью являются полые вальцы, внутри которых циркулирует водяной пар . Сушка на вальцах может осуществляться при атмосферном давлении или в вакууме.

Стационарный психрометр Августа (рисунок 1.3) состоит из двух одинаковых спиртовых термометров. Резервуар одного из них (влажного) обернут гигроскопичной тканью, конец которой опущен в наполняемый дистиллированной водой стаканчик. По ткани к резервуару этого термометра поступает влага взамен испаряющейся. Другой термометр (сухой) показывает температуру воздуха. Показания влажного термометра зависят от содержания водяных паров в воздухе, так как при снижении их массы в единице объема возрастает испарение воды с увлажненной ткани, вследствие чего резервуар охлаждается в большей мере. Определив показания термометров и разность температур, по психрометрической таблице, нанесенной на корпус психрометра, находят относительную влажность воздуха. Вода, испаряясь с поверхности батиста, поглощает тепло, вследствие чего показания влажного термометра меньше, чем сухого.

Первая причина в том, что животное питается растениями, а растения как раз содержат эти вещества. Почему же растения составлены из этих веществ? Растения окружены атмосферой, водой и водяными парами ; они опускают свои корни в почву. Поэтому они и должны содержать эти вещества. Именно: вода дает растению водород и кислород. Почва, растворясь в воде, больше всего несет растениям кальций, фосфор, хлор, серу, натрий, калий, фтор, магний, железо, кремний, марганец, алюминий и т. д. Атмосфера дает кислород, углерод и азот. В ничтожных количествах почва и ее вода содержат и другие элементы, но их количество мало, потому что это редкие вещества или тяжелые и скрытые в недрах земли и потому мало доступные растениям. Если бы на поверхности Земли и в атмосфере преобладали иные элементы, то и состав животных и растений был бы другой.

Парафин – смесь твердых углеводородов – выделяется путем их кристаллизации из так называемой парафиновой массы – смеси твердых и жидких углеводородов, которые получаются при перегонке с водяным паром мазута из некоторых видов нефти, богатых соответствующими твердыми углеводородами. Парафин находит в настоящее время широкое применение не только в промышленности, но и в медицине (парафинотерапия). Остаток после отгона из мазута упомянутых фракций, называемый гудроном или нефтяным пеком, после некоторой обработки находит широкое применение в дорожном строительстве (нефтяной или искусственный асфальт).

Кроме того, в атмосферном воздухе содержатся аргон, гелий, неон, криптон, водород, ксенон и другие газы. В небольшом количестве в атмосферном воздухе присутствуют озон, оксид азота, йод, метан, водяные пары .

К производственным вредностям относятся также неблагоприятные параметры микроклимата производственной среды, водяные пары , образующиеся в процессе варки пищи и мытья посуды, мучная пыль, продукты термического разложения жира, возникающие при жаренье и выпечке кондитерских изделий.

Евролан ДС1 – готовая к применению жидкая суспензия на синтетической основе, образующая эластичную изолирующую пленку. Материал обеспечивает требуемую защиту от водяного пара на разных основаниях. Он обладает диффузионной стойкостью, высокой адгезией, прочностью на растяжение до 450 %, долговечностью под воздействием влаги. Нанесение материла Евролан ДС1 выполняется в 2–3 слоя методом напыления на высохший слой Суперфлекс 1.

Хорошо растворяется в воде, негорючий, однако при нагревании емкости может взрываться. Отравление происходит туманом соляной кислоты, образующейся при взаимодействии газа с водяными парами воздуха. Пары действуют на организм как через органы дыхания, так и через кожу, оказывая сильное раздражающее действие на органы дыхания. В организме человека вызывает поражение и некроз клеток. Острое отравление сопровождается охриплостью голоса, удушьем, насморком, кашлем. При высоких концентрациях – раздражение слизистых, конъюктивит, помутнение роговицы, чувство удушья, хрипы, рвота, потеря сознания. Сильное раздражающее действие на кожу, при ожоге обычно возникает серьезное воспаление с пузырями. Длительное воздействие малых концентраций вызывает катары верхних дыхательных путей, быстрое разрушение эмали зубов, изъязвление слизистой оболочки носа. Предельно допустимая концентрация в рабочих помещениях – 0,005 г/м3, при 0,015 мг/м3 происходит раздражение слизистых оболочек верхних дыхательных путей, концентрации 0,05- 0,07 мг/м3 переносятся с трудом.

Гигрофиты – растения, живущие в местах, где воздух насыщен водяными парами , а почва содержит много капельножидкой влаги – на заливных лугах, болотах, в сырых тенистых местах в лесах, на берегах рек и озер. Гигрофиты испаряют очень много влаги за счет устьиц, которые нередко располагаются на обеих сторонах листа. Корни мало-разветвленные, листья большие.

Промежуточное состояние вещества между состоянием реального газа и жидкостью принято называть парообразным или просто паром. Превращение жидкости в пар представляет собой фазовый переход из одного агрегатного состояния в другое. При фазовом переходе наблюдается скачкообразное изменение физических свойств вещества.

Примерами таких фазовых переходов является процесс кипения жидкости с появлением влажного насыщенного пара и последующим переходом его в лишенный влаги сухой насыщенный пар или обратный кипению процесс конденсации насыщенного пара.

Одно из основных свойств сухого насыщенного пара заключается в том, что дальнейший подвод теплоты к нему приводит к возрастанию температуры пара, т. е. перехода его в состояние перегретого пара, а отвод теплоты — к переходу в состояние влажного насыщенного пара. В

Фазовые состояния воды

Рисунок 1. Фазовая диаграмма для водяного пара в T, s координатах.

Область I – газообразное состояние (перегретый пар, обладающий свойствами реального газа);

Область II – равновесное состояние воды и насыщенного водяного пара (двухфазное состояние). Область II также называют областью парообразования;

Область III – жидкое состояние (вода). Область III ограничена изотермой ЕК;

Область IV – равновесное состояние твердой и жидкой фаз;

Область V – твердое состояние;

Области III, II и I разделены пограничными линиями AK (левая линия) и KD (правая линия). Общая точка K для пограничных линий AK и KD обладает особыми свойствами и называется критической точкой . Эта точка имеет параметры p кр , v кр и Т кр , при которых кипящая вода переходит в перегретый пар, минуя двухфазную область. Следовательно, вода не может существовать при температурах выше Т кр.

Критическая точка К имеет параметры:

p кр = 22,136 МПа; v кр = 0,00326 м 3 /кг; t кр = 374,15 °С.


Значения p, t, v и s для обеих пограничных линий приводятся в специальных таблицах термодинамических свойств водяного пара.

Процесс получения водяного пара из воды

На рисунках 2 и 3 изображены процессы нагрева воды до кипения, парообразования и перегрева пара в p, v — и T, s -диаграммах.

Начальное состояние жидкой воды, находящейся под давлением p 0 и имеющей температуру 0 °С, изображается на диаграммах p, v и T, s точкой а . При подводе теплоты при p = const температура ее увеличивается и растет удельный объем. В некоторый момент температура воды достигает температуры кипения. При этом ее состояние обозначается точкой b. При дальнейшем подводе теплоты начинается парообразование с сильным увеличением объема. При этом образуется двухфазная среда — смесь воды и пара, называемая влажным насыщенным паром . Температура смеси не меняется, так как тепло расходуется на испарение жидкой фазы. Процесс парообразования на этой стадии является изобарно-изотермическим и обозначается на диаграмме как участок bc . Затем в некоторый момент времени вся вода превращается в пар, называемый сухим насыщенным . Это состояние обозначается на диаграмме точкой c .

Рисунок 2. Диаграмма p, v для воды и водяного пара.

Рисунок 3. Диаграмма T, s для воды и водяного пара.

При дальнейшем подводе теплоты температура пара будет увеличиваться и будет протекать процесс перегрева пара c — d . Точкой d обозначается состояние перегретого пара. Расстояние точки d от точки с зависит от температуры перегретого пара.

Индексация для обозначения величин, относящихся к различным состояниям воды и пара:

  • величина с индексом «0» относится к начальному состоянию воды;
  • величина с индексом «′» относится к воде, нагретой до температуры кипения (насыщения);
  • величина с индексом «″» относится к сухому насыщенному пару;
  • величина с индексом «x » относится к влажному насыщенному пару;
  • величина без индекса относится к перегретому пару.

Процесс парообразования при более высоком давлении p 1 > p 0 можно отметить, что точка a, изображающая начальное состояние воды при температуре 0 °С и новом давлении, остается практически на той же вертикали, так как удельный объем воды почти не зависит от давления.

Точка b′ (состояние воды при температуре насыщения) смещается вправо на p, v -диаграмме и поднимается вверх на T,s -диаграмме. Это потому, что с увеличением давления увеличивается температура насыщения и, следовательно, удельный объем воды.

Точка c′ (состояние сухого насыщенного пара) смещается влево, т. к. с увеличением давления удельный объем пара уменьшается, несмотря на увеличение температуры.

Соединение множества точек b и c при различных давлениях дает нижнюю и верхнюю пограничные кривые ak и kc. Из p, v -диаграммы видно, что по мере увеличения давления разность удельных объемов v″ и v′ уменьшается и при некотором давлении становится равной нулю. В этой точке, называемой критической, сходятся пограничные кривые ak и kc. Состояние, соответствующее точке k , называется критическим. Оно характеризуется тем, что при нем пар и вода имеют одинаковые удельные объемы и не отличаются по свойствам друг от друга. Область, лежащая в криволинейном треугольнике bkc p, v -диаграмме), соответствует влажному насыщенному пару.

Состояние перегретого пара изображается точками, лежащими над верхней пограничной кривой kc .

На T, s -диаграмме площадь 0abs′ соответствует количеству теплоты, необходимого для нагрева жидкой воды до температуры насыщения.

Количество подведенной теплоты, Дж/кг, равное теплоте парообразования r, выражается площадью s′bcs, и для нее имеет место соотношение:

r = T (s″ — s′ ).

Количество подведенной теплоты в процессе перегрева водяного пара изображается площадью s″cds .

На T, s -диаграмме видно, что по мере увеличения давления теплота парообразования уменьшается и в критической точке становиться равной нулю.

Обычно T, s -диаграмма применяется при теоретических исследованиях, так как практическое использование ее сильно затрудняется тем, что количества теплоты выражаются площадями криволинейных фигур.

По материалам моего конспекта лекций по термодинамике и учебника «Основы энергетики». Автор Г. Ф. Быстрицкий. 2-е изд., испр. и доп. — М. :КНОРУС, 2011. — 352 с.

Как известно, вещества, причем абсолютно любые могут быть в любом состоянии: , твердое, жидкое, в фазе или даже в нескольких состояниях. На это влияет в первую очередь внешний фактор давления и температуры. В таким веществам относится вода и водяной пар, наблюдение за которыми достаточно интересны. Если происходит явление перехода вещества из одного состояния в другое, этот процесс называется переходом из одной фазы в другую или фазовым переходом, что отслеживает диаграмма. Понятие фазового превращения относится к идентичному понятию и означает то же самое. У веществ в разных фазах агрегатного состояния имеются разные свойства, особенно это касается плотности вещества. Различаются они благодаря молекулярному взаимодействию.

Видоизменения фаз

Видоизменение твердого состояния до состояния жидкого имеет название плавление. Смена жидкой фазы на газообразную представляет собой испарение. Если же вещество из твердого переходит в газообразное – этот процесс называется сублимацией. Если говорить об обратных процессах, то следует знать о таких процессах как: затвердевание, кристаллизация, и де — сублимация.

Водой или по-другому оксидом водорода называют химическую формулу H2O. Это молекула, состоящая из трех атомов, два водорода и один кислорода. Соединяются они ковалентной связью. Вода в своем нормальном представлении является жидкостью, которая абсолютно прозрачная, не пахнет и не имеет никаких вкусовых свойств. Как показывает диаграмма, в газообразном состоянии вода переходит в фазу водяного пара. Она покрывает более 70% нашей планеты и представлена в озерах, реках, морях, океанах и т.д. Подразделяется на пресноводную и соленую, причем второй вариант не пригоден для питья. Ее роль настолько важна, что жизнь без воды просто не может существовать, от нее зависят погодные условия и климатические пояса планеты.

Водяной пар, как газообразное состояние воды, тоже не имеет цвета, ничем не пахнет и безвкусен. Пары воды находятся в тропосфере и образуются при . Поступая в воздушные массы водяной пар, создает определенное давление, называемое парциальным. Давление газа измеряется паскалями и способно перейти в следующую фазу кристаллизация или образование льда. Газообразное состояние воды встречается в естественной среде. В своем количестве пар может изменяться в воздухе, максимальное содержание доходит до 4 %. Водяной пар не видно, но его можно представить как конденсация в виде тумана, дыхания, когда выходишь на холод или когда кипит вода в кастрюле. Водяной пар в равновесии определяет важную характеристику влажность.

Процесс парообразования – это и есть процесс получения пара, и он образован кипением и испарением. Когда происходит испарение, пар появляется на поверхностном слое, кипение вызывает образование пузырьковой поверхности, которые вырываются снизу вверх. Кипение происходит при определенной температуре и на своем пике остается в неизменной температуре. При таком процессе выделяется насыщенный пар, который бывает сухой и влажный. Сухой не содержит в себе водяных капелек, а влажный содержит. Без водяного пара не происходит круговорота воды в природе. Водяной пар в повседневности много где встречается, например, когда вы гладите утюгом или находитесь в бане. Именно потому, что пар бесцветен и не имеет цвета и запаха он нашел применение в человеческой жизнедеятельности. Даже в решении глобальных вопросов пар нашел свое применение, и ярким примером этого стала такая техника как паровоз.

Использование водяного пара

Сегодня пар тоже используется, он нашел свое применение в хозяйственной и производственной сфере деятельности:

— в лечении, например в ингаляторах;

— для пожаротушения;

— паровой котел, отпариватель, автоклав, реакторы и многое другое;

— паровые машины;

— сельское хозяйство;

— промышленность и деревообрабатывающее производство.

Термодинамические свойства

Вода и водяной пар являются телами, активно работающими, например, в паровой турбине. Свойства полностью зависят от конструкции и остальных элементов турбины. С точки зрения свойств воды, она почти не сжимается и если изменить ее давление, то не изменится удельный объем и будет равен от 10-3 м3/кг. При нагревании энтальпия начинает пропорционально меняться. Нагревание в открытом сосуде вызывает поверхностный пар, поднимающийся кверху. Молекулы воды разрывают свои связи, и расходуется теплота, происходит испарение. Влажный пар представлен в виде сухого пара и насыщенного пузырьками воды пара. Еще совсем недавно для паровой турбины использовали перегретый пар, который в турбине расширялся и становился влажным. Законы смешения определяют термодинамические свойства пара.

Диаграмма водяного пара

Чтобы отследить процесс наглядно, придумана диаграмма водяного пара, которая стала отличной заменой многочисленным таблицам и может определять величины в равновесии. Диаграмма составляется по таблице и не может быть точнее, ведь в таблице показатели идентичны, просто перенесены в виде определенного графика. Анализировать турбины лучше всего по T, s диаграмме, где осью абсцисс определена энтропия, а ординатой абсолютная температура. Линии по горизонтали на диаграмме обозначены изотермами, линии вертикальные называются изоэнтропами. Рассчитать анализ и работу турбины лучше всего подходит h, s –диаграмма. То, что в диаграмме выделено жирной линией обозначает сухой пар.

Жидкость — газ

Вызывает большой рост температуры, который постоянно увеличивается при нагревании, пока не достигнет максимальной точки. Выделяется огромное количество тепла, чтобы произошел этот процесс. Если газ начинает охлаждаться, его температура постепенно понижается и при пиковой точке через теплоту парообразования газ возвращается в жидкое состояние. Пар может превратиться в воду только при потере тепла. Например, при кипении воды на кухне на стекле образуется пар, и окна запотевают, как только помещение начнет терять температуру, пар теряется в равновесии и капельками скапливается на подоконнике.

Даже тело человека более чем на 60% состоит из воды, она участвует в биохимических реакциях. Вода выводит из организма вредные вещества и яды, регулирует температуру тела человека. Вода относится к главному источнику энергетических ресурсов, используется в ГЭС и превращает механическую энергию воды в электричество. Ученые почти всех стран занимались исследованием воды, проводили опыты и лабораторные работы. Пар – жидкость в равновесии это такое состояние, когда два вещества находятся в фазе газовая, а испарение равно скорости образования конденсата. Одним словом, это система превращения пар-вода. Теория равновесия достигается даже в относительно замкнутом состоянии, когда происходит контакт воды и паров без вмешательства. В 2011 году было открыто гигантское облако пара, и ученые Гарвард-Смитсоновского центра сделали доклад по описанию явления. Однозначно вода есть и в других галактиках, так как главными ее составляющими являются водород и кислород.

До настоящего времени объектом наших исследований были идеальные газы, т.е. такие газы, где отсутствуют силы межмолекулярных взаимодействий и пренебрегается размерами молекул. На самом деле размеры молекул и силы межмолекулярных взаимодействий имеют большое значение, особенно при низких температурах и больших давлениях.

Одним из представителей реальных газов, применяемых в практике пожарного дела и широко применяемых в промышленном производстве, является водяной пар.

Водяной пар чрезвычайно широко применяется в различных отраслях промышленности, главным образом в качестве теплоносителя в теплообменных аппаратах и как рабочее тело в паросиловых установках. Это объясняется повсеместным распространением воды, ее дешевизной и безвредностью для здоровья человека.

Имея высокое давление и относительно низкую температуру, пар, используемый на практике близок к состоянию жидкости, поэтому пренебрегать силами сцепления между его молекулами и их объемом, как в идеальных газах, нельзя. Следовательно, не представляется возможным использовать для определения параметров состояния водяного пара уравнения состояния идеальных газов, т. е. для пара pv≠RT, ибо водяной пар есть реальный газ.

Попытки ряда ученых (Ван-дер-Ваальса, Бертло, Клаузиуса и др.) уточнить уравнения состояния реальных газов путем введения поправок в уравнение состояния для идеальных газов не увенчались успехом, так как эти поправки относились только к объему и силам сцепления между молекулами реального газа и не учитывали ряда других физических явлений, происходящих в этих газах.

Особую роль играет уравнение, предложенное Ван-дер-Ваальсом в 1873 г., (P + a/ v 2)( v - b) = RT . Являясь приближенным при количественных расчетах, уравнение Ван-дер-Ваальса качественно хорошо отображает физические особенности газов, так как позволяет описать общую картину изменения состояния вещества с переходом его в отдельные фазовые состояния. В этом уравнении а и в для данного газа являются постоянными величинами, учитывающими: первая - силы взаимодействия, а вторая - размер молекул. Отношение а/v 2 характеризует добавочное давление, под которым находится реальный газ вследствие сил сцепления между молекулами. Величина в учитывает уменьшение объема, в котором движутся молекулы реального газа, вследствие того, что они сами обладают объемом.

Наиболее известны в настоящее время уравнение, разработанное в 1937-1946 гг. американским физиком Дж. Майером и независимо от него советским математиком Н. Н. Боголюбовым, а также уравнение предложенное советскими учеными М. П. Вукаловичем и И. И. Новиковым в 1939 г.

Ввиду громоздкости эти уравнения рассматриваться не будут.


Для водяного пара все параметры состояния для удобства пользования сведены в таблицы и представлены в приложении 7.

Итак, водяным паром называется получающийся из воды реальный газ с относительно высокой критической температурой и близкий к состоянию насыщения.

Рассмотрим процесс превращения жидкости в пар, называемый иначе процессом парообразования . Жидкость может превращаться в пар при испарении и кипении.

Испарением называется парообразование, происходящее только с поверхности жидкости и при любой температуре . Интенсивность испарения зависит от природы жидкости и ее температуры. Испарение жидкости может быть полным, если над жидкостью находится неограниченное пространство. В Природе процесс испарения жидкости осуществляется в гигантских масштабах в любое время года.

Суть процесса испарения заключается в том, что отдельные молекулы жидкости, находящиеся у ее поверхности и обладающие большей по сравнению с другими молекулами кинетической энергией, преодолевая силовое действие соседних молекул, создающее поверхностное натяжение, вылетают из жидкости в окружающее пространство. С увеличением температуры интенсивность испарения возрастает, так как увеличиваются скорость и энергия молекул и уменьшаются силы их взаимодействия. При испарении температура жидкости снижается, так как из нее вылетают молекулы, обладающие сравнительно большими скоростями, вследствие чего уменьшается средняя скорость оставшихся в ней молекул.

При сообщении жидкости теплоты повышаются ее температура и интенсивность испарения. При некоторой вполне определенной температуре, зависящей от природы жидкости и давления, под которым она находится, начинается парообразование во всей ее массе . При этом устенок сосуда и внутри жидкости образуются пузырьки пара. Это явление называется кипением жидкости. Давление получающегося при этом пара такое же, как и среды, в которой происходит кипение.

Процесс, обратный парообразованию называется конденсацие й . Этот процесс превращения пара в жидкость так же происходит при постоянной температуре, если давление остается постоянным. При конденсации хаотично движущиеся молекулы пара, соприкасаясь с поверхностью жидкости попадают под влияние межмолекулярных сил воды, остаются там, вновь преобразуясь в жидкость. Т.к. молекулы пара имеют большую по сравнению с молекулами жидкости скорость, то при конденсации температура жидкости увеличивается. Жидкость, образующаяся при конденсации пара, называется конденсатом .

Рассмотрим процесс парообразования более подробно.

Переход жидкости в пар имеет три стадии:

1. Нагревание жидкости до температуры кипения.

2. Парообразование.

3. Перегрев пара.

Остановимся на каждой стадии более подробно.

Возьмём цилиндр с поршнем, поместим туда 1 кг воды при температуре 0°С, условно принимая, что удельный объём воды при этой температуре минимален 0.001 м 3 /кг. На поршень положен груз, который вместе с поршнем оказывает на жидкость постоянное давление Р. Этому состоянию соответствует точка 0. Начнём подводить к этому цилиндру тепло.

Рис. 28. График изменения удельного объёма парожидкостной смеси при давлении насыщения P s .

1. Процесс подогрева жидкости . В этом процессе, осуществляемом при постоянном давлении за счёт теплоты, сообщаемой жидкости, происходит её нагрев от 0 °С до температуры кипения t s . Т.к. вода имеет сравнительно небольшой коэффициент термического расширения, то удельный объём жидкости изменится незначительно и увеличится от v 0 до v¢. Этому состоянию соответствует точка 1, а процессу – отрезок 0-1.

2. Процесс парообразования . При дальнейшем подводе тепла вода будет кипеть и переходить в газообразное состояние, т.е. водяной пар. Этому процессу соответствует отрезок 1-2 и увеличение удельного объёма от v¢ до v¢¢. Процесс парообразования происходит не только при постоянном давлении, но и при постоянной температуре, равной температуре кипения. При этом вода в цилиндре будет находиться уже в двух фазах: пара и жидкости. Вода присутствует в виде жидкости, сосредоточенной внизу цилиндра и в виде мельчайших капелек, равномерно распределённой по всему объёму.

Процесс парообразования сопровождается и обратным процессом, называемым конденсацией. Если скорость конденсации станет равной скорости испарения, то в системе наступает динамическое равновесие. Пар в этом состоянии имеет максимальную плотность и называется насыщенным. Следовательно, под насыщенным понимают пар, находящийся в равновесном состоянии с жидкостью, из которой он образуется . Основное свойство этого пара состоит в том, что он имеет температуру, являющуюся функцией его давления, одинакового с давлением той среды, в которой происходит кипение. Поэтому температура кипения иначе называется температурой насыщения и обозначается t н.Давление, соответствующее t н, называется давлением насыщения (обозначается р н или просто p. Пар образуется до тех пор, пока не испарится последняя капля жидкости. Этому моменту будет соответствовать состояние сухого насыщенного (или просто сухого ) пара. Пар, получаемый при неполном испарении жидкости, называется влажным насыщенным паром или просто влажным . Он является смесью сухого пара с капельками жидкости, распространенными равномерно во всей его массе и находящимися в нем во взвешенном состоянии. Массовая доля сухого пара во влажном паре называется степенью сухости или массовым паросодержанием и обозначается через х. Массовая доля жидкости во влажном паре называется степенью влажности и обозначается через у. Очевидно, что у = 1 - х. Степень сухости и степень влажности выражают или в долях единицы, или в %: например, если х = 0.95 и у = 1 - х = 0.05, то это означает, что в смеси находится 95% сухого пара и 5% кипящей жидкости.

3. Перегрев пара. При дальнейшем подводе тепла температура пара будет повышаться (соответственно увеличивается удельный объём от v¢¢ до v¢¢¢). Этому состоянию соответствует отрезок 2-3. Если температура пара выше температуры насыщенного пара того же давления, то такой пар называется перегретым . Разность между температурой перегретого пара и температурой насыщенного пара того же давления называется степенью перегрев а .

Поскольку удельный объем перегретого пара больше удельного объема насыщенного пара (так как р= const, t пер > t н), то плотность перегретого пара меньше плотности насыщенного пара. Поэтому перегретый пар является ненасыщенным. По своим физическим свойствам перегретый пар приближается к газам и тем больше, чем выше степень его перегрева.

Из опыта найдены положения точек 0 - 2 при других, более высоких давлениях насыщения. Соединив соответствующие точки при различных давлениях, получим диаграмму состояния водяного пара.

Рис. 29. pv – диаграмма состояния водяного пара.

Из анализа диаграммы видно, что по мере увеличения давления удельный объём жидкости уменьшается. На диаграмме этому уменьшению объёма с ростом давления соответствует линия СД. Температура насыщения, и, следовательно, удельный объём увеличиваются, что и продемонстрировано линией АК. Также быстрее происходит испарение воды, что ясно видно из линии ВК. При увеличении давления уменьшается разность между v¢ и v¢¢, постепенно сближаются линии АК и ВК. При некотором вполне определённом для каждого вещества давлении эти линии сходятся в одной точке К, называемой критической. Точка К, одновременно принадлежащая линии жидкости при температуре кипения АК и линии сухого насыщенного пара ВК, соответствует некоторому предельному критическому состоянию вещества, при котором отсутствует различие между паром и жидкостью. Параметры состояния называются критическими и обозначаются Т к, P к, v к. Для воды критические параметры имеют значения: Т к =647.266К, Р к = 22.1145МПа, v к =0.003147 м 3 /кг.

Состояние, в котором могут находиться в равновесии все три фазы воды, называется тройной точкой воды. Для воды: Т 0 = 273.16К, Р 0 = 0.611 кПа, v 0 = 0.001 м 3 /кг. В термодинамике удельные энтальпия, энтропия и внутренняя энергия в тройной точке принимается равной нулю, т.е. i 0 = 0, s 0 = 0, u 0 = 0.

Определим основные параметры водяного пара

1. Подогрев жидкости

Количество теплоты, необходимое для нагревания 1 кг жидкости от 0 °С до температуры кипения называется удельнойтеплотой жидкости . Теплота жидкости является функцией давления, принимающей максимальное значение при критическом давлении.

Величина её определяется:

q = с р (t s -t 0) ,

где с р – средняя массовая изобарная теплоёмкость воды в интервале температур от t 0 = 0 °С до t s , берётся по справочным данным

т.е. q = с р t s

Удельная теплота измеряется в Дж/кг

Величина q выражается как

где i¢ - энтальпия воды при температуре кипения;

i - энтальпия воды при 0 °С.

Согласно первому закону термодинамики

i = u 0 + P s v 0 ,

где u 0 – внутренняя энергия при 0 °С.

i¢ = q + u 0 + P s v 0

Примем условно, как и в случае идеальных газов, что u 0 = 0. Тогда

i¢ = q + P s v 0

Эта формула позволяет вычислить величину i¢ по найденным из опыта величинам Р s , v 0 и q.

При невысоких давлениях Р s , когда для воды величина Р s v 0 мала по сравнению с теплотой жидкости, можно приближённо принять

Теплота жидкости с увеличением давления насыщения увеличивается и в критической точке достигает максимальной величины. Учитывая, что i=u+ Pv (1), можно написать следующее выражение для внутренней энергии воды при температуре кипения:

u¢ = i¢ + P s v¢

Изменение энтропии в процессе подогрева жидкости


Допуская, что энтропия воды при 0


Эта формула позволяет вычислить энтальпию жидкости при температуре кипения.

2. Парообразование

Количество теплоты, необходимое для перевода 1 кг жидкости, нагретой до температуры кипения, в сухой насыщенный пар в изобарном процессе называется удельной теплотой парообразования (r) .

Теплота парообразования определяется:

i¢¢ = r + i¢ по найденной из опыта теплоте парообразования и энтальпии воды при температуре кипения i¢. Учитывая (1), можно записать:

r = (u¢¢-u¢)+P s (v¢¢-v¢),

где u¢ и u¢¢ - внутренняя энергия воды при температуре кипения и сухого насыщенного пара. Это уравнение показывает, что теплота парообразования состоит из двух частей. Одна часть (u¢¢-u¢) затрачивается на увеличение внутренней энергии образующегося из воды пара. Она называется внутренней теплотой парообразования и обозначается буквой r. Другая часть P s (v¢¢-v¢) затрачивается на внешнюю работу, совершаемую паром в изобарном процессе кипения воды, и называется внешней теплотой парообразования (y).

Теплота парообразования уменьшается с увеличением давления насыщения и в критической точке равна нулю. Теплота жидкости и теплота парообразования образуют полную теплоту сухого насыщенного пара l¢¢.

Внутренняя энергия сухого насыщенного пара u¢¢ равна

u¢¢=i¢¢-P s v¢¢

Изменение энтропии пара в процессе парообразования определяется выражением


Это выражение позволяет определить энтропию сухого насыщенного пара s¢¢.

Влажный насыщенный пар между граничными величинами удельных объёмов v¢ и v¢¢ состоит из сухого насыщенного пара и воды. Количество сухого насыщенного пара в 1 кг влажного насыщенного пара называется степенью сухости , или паросодержанием . Эта величина называется буквой x . Величина (1-x) называется степенью влажности пара .

Если учесть степень сухости, то удельный объём влажного насыщенного пара v x

v x = v¢¢x + v¢(1-x)

Теплота парообразования r x , энтальпия i x , полная теплота l x , внутренняя энергия u x и энтропия s x для влажного насыщенного пара имеет следующие величины:

r x = rx; i x = i¢ + rx; l x = q + rx; u x = i¢ + rx – p s v s ; s x = s¢ + rx/T s

3. Процесс перегрева пара

Сухой насыщенный пар перегревается при постоянном давлении от температуры кипения t s до заданной температуры t ; при этом удельный объём пара увеличивается от до v . Количество теплоты, которое затрачивается на перегрев 1 кг сухого насыщенного пара от температуры кипения до данной температуры, называется теплотой пароперегрева. Теплоту пароперегрева можно определить:

где - с p средняя массовая теплоёмкость пара в интервале температур t s – t (определяется по справочным данным).

Для величины q п можно записать

q п = i – i¢ ,

где I – энтальпия перегретого пара.