Типы движений. Прямолинейное движение I

1) Аналитический способ.

Считаем шоссе прямолинейным. Запишем уравнение движения велосипедиста. Так как велосипедист двигался равномерно, то его уравнение движения:

(начало координат помещаем в точку старта, поэтому начальная координата велосипедиста равна нулю).

Мотоциклист двигался равноускоренно. Он также начал движение с места старта, поэтому его начальная координата равна нулю, начальная скорость мотоциклиста также равна нулю (мотоциклист начал двигаться из состояния покоя).

Учитывая, что мотоциклист начал движение на позже, уравнение движения мотоциклиста:

При этом скорость мотоциклиста изменялась по закону:

В момент, когда мотоциклист догнал велосипедиста их координаты равны, т.е. или:

Решая это уравнение относительно , находим время встречи:

Это квадратное уравнение. Определяем дискриминант:

Определяем корни:

Подставим в формулы числовые значения и вычислим:

Второй корень отбрасываем как несоответствующий физическим условиям задачи: мотоциклист не мог догнать велосипедиста через 0,37 с после начала движения велосипедиста, так как сам покинул точку старта только через 2 с после того, как стартовал велосипедист.

Таким образом, время, когда мотоциклист догнал велосипедиста:

Подставим это значение времени в формулу закона изменения скорости мотоциклиста и найдем значение его скорости в этот момент:

2) Графический способ.

На одной координатной плоскости строим графики изменения со временем координат велосипедиста и мотоциклиста (график для координаты велосипедиста — красным цветом, для мотоциклиста — зеленым). Видно, что зависимость координаты от времени для велосипедиста — линейная функция, и график этой функции — прямая (случай равномерного прямолинейного движения). Мотоциклист двигался равноускоренно, поэтому зависимость координаты мотоциклиста от времени — квадратичная функция, графиком которой является парабола.

Равномерное движение - это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).

Прямолинейное движение - это движение по прямой линии, то есть траектория прямолинейного движения - это прямая линия.

Это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Например, если мы разобьём какой-то временной интервал на отрезки по одной секунде, то при равномерном движении тело будет перемещаться на одинаковое расстояние за каждый из этих отрезков времени.

Скорость равномерного прямолинейного движения не зависит от времени и в каждой точке траектории направлена также, как и перемещение тела. То есть вектор перемещения совпадает по направлению с вектором скорости. При этом средняя скорость за любой промежуток времени равна мгновенной скорости:

vcp = v

Скорость равномерного прямолинейного движения - это физическая векторная величина, равная отношению перемещения тела за любой промежуток времени к значению этого промежутка t:

= / t

Таким образом, скорость равномерного прямолинейного движения показывает, какое перемещение совершает материальная точка за единицу времени.

Перемещение при равномерном прямолинейном движении определяется формулой:

Пройденный путь при прямолинейном движении равен модулю перемещения. Если положительное направление оси ОХ совпадает с направлением движения, то проекция скорости на ось ОХ равна величине скорости и положительна:

vx = v, то есть v > 0

Проекция перемещения на ось ОХ равна:

s = vt = x - x0

где x 0 - начальная координата тела, х - конечная координата тела (или координата тела в любой момент времени)

Уравнение движения , то есть зависимость координаты тела от времени х = х(t), принимает вид:

х = x0 + vt

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v < 0), и тогда уравнение движения принимает вид:

х = x0 - vt

Равномерное прямолинейное движение - это частный случай неравномерного движения.

Неравномерное движение - это движение, при котором тело (материальная точка) за равные промежутки времени совершает неодинаковые перемещения. Например, городской автобус движется неравномерно, так как его движение состоит в основном из разгонов и торможений.

Равнопеременное движение - это движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково.

Ускорение тела при равнопеременном движении остаётся постоянным по модулю и по направлению (a = const).

Равнопеременное движение может быть равноускоренным или равнозамедленным.

Равноускоренное движение - это движение тела (материальной точки) с положительным ускорением, то есть при таком движении тело разгоняется с неизменным ускорением. В случае равноускоренного движения модуль скорости тела с течением времени возрастает, направление ускорения совпадает с направлением скорости движения.

Равнозамедленное движение - это движение тела (материальной точки) с отрицательным ускорением, то есть при таком движении тело равномерно замедляется. При равнозамедленном движении векторы скорости и ускорения противоположны, а модуль скорости с течением времени уменьшается.

В механике любое прямолинейное движение является ускоренным, поэтому замедленное движение отличается от ускоренного лишь знаком проекции вектора ускорения на выбранную ось системы координат.

Средняя скорость переменного движения определяется путём деления перемещения тела на время, в течение которого это перемещение было совершено. Единица измерения средней скорости - м/с.

vcp = s / t

Это скорость тела (материальной точки) в данный момент времени или в данной точке траектории, то есть предел, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Δt:

Вектор мгновенной скорости равнопеременного движения можно найти как первую производную от вектора перемещения по времени:

= "

Проекция вектора скорости на ось ОХ:

vx = x’

это производная от координаты по времени (аналогично получают проекции вектора скорости на другие координатные оси).

Это величина, которая определяет быстроту изменения скорости тела, то есть предел, к которому стремится изменение скорости при бесконечном уменьшении промежутка времени Δt:

Вектор ускорения равнопеременного движения можно найти как первую производную от вектора скорости по времени или как вторую производную от вектора перемещения по времени:

= " = " Учитывая, что 0 - скорость тела в начальный момент времени (начальная скорость), - скорость тела в данный момент времени (конечная скорость), t - промежуток времени, в течение которого произошло изменение скорости, будет следующей:

Отсюда формула скорости равнопеременного движения в любой момент времени:

0 + t Если тело движется прямолинейно вдоль оси ОХ прямолинейной декартовой системы координат, совпадающей по направлению с траекторией тела, то проекция вектора скорости на эту ось определяется формулой:

vx = v0x ± axt

Знак «-» (минус) перед проекцией вектора ускорения относится к равнозамедленному движению. Аналогично записываются уравнения проекций вектора скорости на другие оси координат.

Так как при равнопеременном движении ускорение является постоянным (a = const), то график ускорения - это прямая, параллельная оси 0t (оси времени, рис. 1.15).

Рис. 1.15. Зависимость ускорения тела от времени.

Зависимость скорости от времени - это линейная функция, графиком которой является прямая линия (рис. 1.16).

Рис. 1.16. Зависимость скорости тела от времени.

График зависимости скорости от времени (рис. 1.16) показывает, что

При этом перемещение численно равно площади фигуры 0abc (рис. 1.16).

Площадь трапеции равна произведению полусуммы длин её оснований на высоту. Основания трапеции 0abc численно равны:

0a = v0 bc = v

Высота трапеции равна t. Таким образом, площадь трапеции, а значит, и проекция перемещения на ось ОХ равна:


В случае равнозамедленного движения проекция ускорения отрицательна и в формуле для проекции перемещения перед ускорением ставится знак «-» (минус).

График зависимости скорости тела от времени при различных ускорениях показан на рис. 1.17. График зависимости перемещения от времени при v0 = 0 показан на рис. 1.18.

Рис. 1.17. Зависимость скорости тела от времени для различных значений ускорения.

Рис. 1.18. Зависимость перемещения тела от времени.

Скорость тела в данный момент времени t 1 равна тангенсу угла наклона между касательной к графику и осью времени v = tg α, а перемещение определяют по формуле:

Если время движения тела неизвестно, можно использовать другую формулу перемещения, решая систему из двух уравнений:


Поможет нам вывести формулу для проекции перемещения:

Так как координата тела в любой момент времени определяется суммой начальной координаты и проекции перемещения, то будет выглядеть следующим образом:

Графиком координаты x(t) также является парабола (как и график перемещения), но вершина параболы в общем случае не совпадает с началом координат. При а x < 0 и х 0 = 0 ветви параболы направлены вниз (рис. 1.18).

В основе многих задач в физике лежит рассмотрение прямолинейного равномерного и равноускоренного движения. Они являются самыми простыми и идеализированными случаями перемещения тел в пространстве. Охарактеризуем их подробнее в данной статье.

Прежде чем рассмотреть равномерное и полезно разобраться с самим понятием.

Движение представляет собой процесс изменение координат материальной точки в пространстве за определенный промежуток времени. Согласно данному определению, выделим следующие признаки, по которым можно сразу сказать, идет ли речь о движении или нет:

  • Должно иметь место изменение пространственных координат. В противном случае тело можно считать покоящимся.
  • Процесс должен развиваться во времени.

Также обратим внимание на понятие "материальной точки". Дело в том, что при изучении вопросов механического движения (равномерного и равноускоренного прямолинейного движения в том числе) строение тела и его размеры не учитывают. Связано это приближение с тем, что величина изменения координат в пространстве намного превосходит физические размеры движущегося объекта, поэтому его считают материальной точкой (слово "материальный" предполагает учет его массы, поскольку ее знание необходимо при решении рассматриваемых задач).

Основные физические величины, характеризующие движение

К ним относятся скорость, ускорение, пройденный путь, а также понятие траектории. Разберем каждую величину по порядку.

Скорость прямолинейного равномерного и равноускоренного движения (векторная величина) отражает быстроту изменения координат тела во времени. Например, если оно переместилось за 10 секунд на 100 метров (типичные значения для спринтеров на спортивных соревнованиях), тогда говорят о скорости 10 метров в секунду (100/10 = 10 м/с). Обозначается эта величина латинской буквой "v" и измеряется в единицах расстояния, деленных на время, например, километры в час (км/ч), метры в минуту (м/мин.), мили в час (мил./ч) и так далее.

Ускорение - физическая которая обозначается буквой "a", и характеризуется быстроту изменения самой скорости. Возвращаясь к примеру спринтеров, известно, что в начале забега они совершают старт с небольшой скоростью, по мере движения она увеличивается, достигая максимальных значений. Размерность ускорения получается, если поделить таковую для скорости на время, например, (м/с)/с или м/с 2 .

Пройденный путь (скалярная величина) отражает расстояние, которое прошел (проехал, пролетел, проплыл) движущийся объект. Эта величина однозначно определяется только начальным и конечным положением объекта. Измеряется она в единицах расстояния (метры, километры, миллиметры и другие) и обозначается буквой "s" (иногда "d" или "l").

Траектория в отличие от пути характеризует кривую линию, по которой двигалось тело. Поскольку в данной статье рассматривается только движение равноускоренное и равномерное прямолинейное, то и траектория для него будет прямой линией.

Вопрос относительности движения

Многие люди замечали, что находясь в автобусе, можно видеть, что движущийся по соседней полосе автомобиль, кажется покоящимся. Этот пример наглядно подтверждает, относительность движения (равноускоренного, равномерного прямолинейного движения и других его видов).

Учитывая названную особенность, при рассмотрении задач с движущимися объектами всегда вводят систему отсчета, относительно которой решают поставленную проблему. Так, если за систему отчета взять пассажира в автобусе в примере выше, то относительно него скорость автомобиля будет равна нулю. Если же рассматривать движение относительно стоящего на остановке человека, то относительно него автомобиль движется с некоторой скоростью v.

В случае прямолинейного движения, когда два объекта движутся вдоль одной линии, то скорость одного из них относительно другого определяется по формуле: v ¯ = v ¯ 1 + v ¯ 2 , здесь v ¯ 1 и v ¯ 2 - скорости каждого объекта (черта означает, что складываются векторные величины).

Самый простой вид движения

Конечно же, таковым является движение объекта по прямой с постоянной скоростью (равномерное прямолинейное). Примером этого типа движения является полет самолета через облака или ходьба пешехода. В обоих случаях траектория объекта остается прямой, и каждый из них перемещается с конкретной скоростью.

Формулы, описывающие этот тип перемещения объектов, имеют следующий вид:

  • s = v*t;
  • v = s/t.

Здесь t - промежуток времени, в течение которого рассматривается движение.

Равноускоренное прямолинейное перемещение

Под ним понимают такой тип прямолинейного перемещения объекта, при котором его скорость изменяется по формуле v = a*t, где a - постоянное ускорение. Изменение скорости возникает за счет действия внешних сил, имеющих различную природу. Например, тот же самолет, прежде чем достигнет крейсерской скорости, должен ее набрать из состояния покоя. Другой пример: торможение автомобиля, когда скорость изменяется от некоторой величины до нуля. Этот тип движения называется равнозамедленным, поскольку ускорение имеет в нем отрицательный знак (направлено против вектора скорости).

Пройденный путь s при данном типе перемещения можно рассчитать, если проинтегрировать величину скорости по времени, в результате получится формула: s = a*t 2 /2, где t - время ускорения (торможения).

Смешанный тип движения

В ряде случаев прямолинейное перемещение объектов в пространстве происходит, как с постоянной скоростью, так и с ускорением, поэтому полезно привести формулы для этого смешанного типа движения.

Скорость и ускорение равномерного и равноускоренного прямолинейного движения связаны друг с другом следующим выражением: v = v 0 + a*t, где v 0 - значение начальной скорости. Понять эту формулу просто: сначала объект двигался с постоянной скорость v 0 , например, автомобиль по дороге, но затем он начал ускоряться, то есть за каждый промежуток времени t он начал увеличивать быстроту своего перемещения на a*t. Поскольку скорость аддитивная величина, то сумма ее начального значения с величиной изменения приведет к отмеченному выражению.

Интегрируя эту формулу по времени, получаем другое уравнение прямолинейного равномерного и равноускоренного движения, которое позволяет рассчитать пройденный путь: s = v 0 *t + a*t 2 /2. Как видно, это выражение равно сумме аналогичных формул для более простых видов движения, рассмотренных в предыдущих пунктах.

Пример решения задачи

Решим несложную задачу, которая продемонстрирует использование приведенных формул. Условие задачи следующее: автомобиль, двигаясь со скоростью 60 км/ч, начал осуществлять торможение и через 10 секунд полностью остановился. Какой путь он прошел во время торможения?

В данном случае мы имеем дело с прямолинейным равнозамедленным движением. Начальная скорость v 0 = 60 км/ч, конечное же значение этой величины v = 0 (автомобиль остановился). Для определения ускорения торможения воспользуемся формулой: v = v 0 - a*t (знак "-" говорит, что тело замедляет движение). Переведем км/ч в м/с (60 км/ч = 16,667 м/с), и учитывая, что время торможение t = 10 c, получаем: a = (v 0 - v)/t = 16,667/10 = 1,667 м/с 2 . Мы определили ускорение торможения автомобиля.

Для вычисления пройденного пути воспользуемся также уравнением для смешанного типа движения с учетом знака ускорения: s = v 0 *t - a*t 2 /2. Подставляя известные величины, получаем: s = 16,667*10 - 1,667*10 2 /2 = 83,33 метра.

Отметим, что пройденный путь можно было найти, используя формулу для равноускоренного движения (s = a*t 2 /2), поскольку при торможении автомобиль пройдет точно такое же расстояние, как и во время ускорения из состояния покоя до достижения скорости v 0 .

Движение по кривой

Важно отметить, что рассмотренные выражения для пройденного пути применимы не только для случая прямолинейного движения, но и для любого перемещения объекта по криволинейной траектории.

Например, для расчета расстояния, которое пролетит наша планета вокруг Солнца (движение по окружности) за определенный промежуток времени, можно с успехом применить выражение s = v*t. Сделать это можно потому, что в нем используется модуль скорости, который является постоянной величиной, вектор же скорости изменяется. Применяя формулу для пути по криволинейной траектории, следует иметь в виду, что полученное значение будет отражать длину этой траектории, а не разницу между конечной и начальной координатами объекта.

I. ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ

ТЕМА 1.1. «КИНЕМАТИКА ПРЯМОЛИНЕЙНОГО И КРИВОЛИНЕЙНОГО ДВИЖЕНИЯ»

КИНЕМАТИКА ПРЯМОЛИНЕЙНОГО ДВИЖЕНИЯ

В этой главе предстоит изучить самый простой вид движения – ПРЯМОЛИНЕЙНОЕ ДВИЖЕНИЕ .

Прямолинейным называется движение, которое осуществляется вдоль прямой линии. Выражаясь научно, это движение, траектория которого представляет собой прямую линию.

Любое физическое явление описывается посредством математических формул, в которых фигурируют физические величины. Поэтому необходимо оговорить эти самые физические величины, характеризующие движение, в том числе и прямолинейное. Таковыми являются:

Таблица 1.1

Заметьте, что в таблице 1.1 умышленно не приводится определение времени, поскольку оно скорее философское, чем физическое. А для изучения этого раздела физики вполне достаточно бытового представления о времени.

Таким образом, при помощи этих четырех величин описываются все виды прямолинейного движения. А их всего три:

  1. РАВНОМЕРНОЕ ПРЯМОЛИНЕЙНОЕ ДВИЖЕНИЕ
  2. РАВНОПЕРЕМЕННОЕ ПРЯМОЛИНЕЙНОЕ ДВИЖЕНИЕ
  3. НЕРАВНОПЕРЕМЕННОЕ ПРЯМОЛИНЕЙНОЕ ДВИЖЕНИЕ

Рассмотрим каждое из них. А начнем с самого простого – равномерного прямолинейного движения.

1. Равномерное прямолинейное движение – это движение с постоянной скоростью. Если скорость тела не изменяется, то ускорения у него попросту нет. Математические признаки этого движения записываются следующим образом:

υ=const, a=0 .

Попытаемся представить себе это движение: тело движется со скоростью, к примеру,

5 м/с, и, поскольку движение равномерное, его скорость не изменяется. Это означает, что за каждую секунду оно проходит расстояние в 5 метров. Как определить, какое расстояние пройдет это тело за время t = 20 секунд? Для этого нужно 5 м/с умножить на 20 с – получим расстояние S = 100 м. Таким образом, можем записать формулу равномерного прямолинейного движения:

S = υt

Отсюда легко вывести формулу скорости: (1.1)

2. Равнопеременное движение – это движение с постоянным ускорением. В этом случае скорость все время изменяется, но изменяется равномерно: за каждую секунду на одну и ту же величину. Эта величина и равна ускорению тела. Например: тело движется с постоянным ускорением а = 2 м/с 2 . Если в определенный момент времени скорость тела равна, к примеру, 10 м/с, то в следующую секунду она увеличится на 2 м/с и будет равна 12 м/с, еще через секунду она увеличится еще на 2 м/с и станет равна уже

14 м/с – так каждую секунду. Получается равноускоренное движение.

Но тело может двигаться так, что его скорость будет не увеличиваться, а наоборот уменьшаться. И в этом случае ускорение у тела тоже есть. Но, если в предыдущем примере оно было больше нуля (а > 0 ), т.е. положительным, то при уменьшении скорости ускорение меньше нуля (а < 0 ), т.е. считается отрицательным. Например: тело движется с постоянным ускорением а = - 2 м/с 2 . Если в определенный момент времени скорость тела равна, к примеру, 10 м/с, то в следующую секунду она уменьшится на 2 м/с и будет равна 8 м/с, еще через секунду она уменьшится еще на 2 м/с и станет равна уже 6 м/с – и, в конце концов, через 3 секунды тело остановится. Получается равнозамедленное движение. Правда слово «равнозамедленное» применять не принято, поэтому такое движение считается равноускоренным, но с отрицательным ускорением. А, в целом, движение с постоянным ускорением называется равнопеременным.

Признаки равнопеременного движения можно записать следующим образом:

υ ≠ const, a = const(a≠0) .

Математически равнопеременное движение описывается двумя уравнениями –

уравнение пути и уравнение скорости, образующие систему:

(1.2),

где υ 0 – начальная скорость тела (т.е. скорость в начале движения).

3. Неравнопеременное движение – это движение с изменяющимся ускорением . В случае этого движения все время изменяется не только скорость, но и ускорение. При чем изменяться они могут совершенно произвольно: могут все время увеличиваться или все время уменьшаться, а могут то увеличиваться, то уменьшаться. Но, как и в предыдущем случае, если скорость увеличивается, значит ускорение в это время положительное и сонаправлено со скоростью. А, если скорость уменьшается, то ускорение – отрицательное и направлено противоположно скорости (см. рис.1.1 и 1.2).

Рис. 1.1 Рис. 1.2

а > 0 а < 0

Признаки неравнопеременного движения можно записать следующим образом:

υ ≠ const, a ≠ const.

Как видите, из всех прямолинейных движений этот вид – самый сложный. Но, тем не менее, и для него существуют формулы, позволяющие просчитывать все характеристики движения. Их тоже две: уравнение скорости и уравнение ускорения.

Символ « » означает, что нужно выполнить действие дифференцирования по времени. Формально дифференцирование выполняется так же, как и взятие производной, только записывается в другой форме.

Обратите внимание, что формулы (1.1) и (1.4) отличаются лишь наличием символа дифференцирования. И неудивительно, ведь они описывают разновидности прямолинейного движения. И формулы (1.4) и (1.5) являются общими формулами для всех трех случаев прямолинейного движения.

Возникает вопрос: как можно вычислить, например, S, руководствуясь этими формулами? – Для этого нужно совершить действие, обратное дифференцированию. А таковым является интегрирование. Проделаем это.

Заключается в том, что, рассматривая того или иного тела, следует учитывать, что все его точки движутся в одном и том же направлении с абсолютно одинаковой скоростью. Именно поэтому необязательно давать характеристику движения всего данного тела, можно ограничиться лишь одной его точкой.

К основным характеристикам любого движения относятся его траектория, перемещение и скорость. Траектория - это всего лишь существующая только в воображении линия, вдоль которой осуществляется движение данной материальной точки в пространстве. Перемещение представляет собой вектор, направленный от начальной точки к конечной. Наконец, скорость является общим показателем движения точки, который характеризует не только ее направление, но и быстроту перемещения относительно какого-либо тела, принятого за точку отсчета.

Равномерное прямолинейное движение - это во многом воображаемое понятие, которое характеризуется двумя основными факторами - равномерностью и прямолинейностью.

Равномерность движения означает, что оно осуществляется с постоянной скоростью без какого-либо ускорения. Прямолинейность движения подразумевает, что оно происходит вдоль прямой линии, то есть его траектория - это абсолютно прямая линия.

Исходя из всего вышеперечисленного, можно сделать вывод, что равномерное прямолинейное движение - это особый вид движения, в результате которого тело за абсолютно равные промежутки времени осуществляет одно и то же перемещение. Так, разбив определенный интервал на равные промежутки (например, по одной секунде), можно будет увидеть, что при указанном выше движении тело будет за каждый из этих отрезков проходить одно и то же расстояние.

Скорость равномерного прямолинейного движения есть которая в численном выражении равна отношению пути, пройденного телом за тот или иной промежуток времени, к числовому значению этого промежутка. Эта величина никаким образом не зависит от времени, более того, стоит отметить, что скорость равномерного прямолинейного движения в любой точке траектории абсолютно совпадает с перемещением тела. При этом количественное значение за взятый произвольно промежуток времени равно

Равномерное прямолинейное движение характеризуется особым подходом к пути, которое проходит тело за определенный промежуток времени. Пройденный путь при таком есть не что иное, как модуль перемещения. Перемещение же, в свою очередь, представляет собой произведение скорости, с которой двигалось тело, на время, в течение которого это перемещение осуществлялось.

Вполне естественно, что если вектор перемещения совпадает с положительным направлением оси абсцисс, то проекция рассчитанной скорости будет не только положительной, но и совпадать с величиной скорости.

Равномерное прямолинейное движение можно представить, в том числе, и в виде уравнения, в котором будет отражаться зависимость между координатами тела и времени.