Потенциал действия. Фазы потенциала действия нервного волокна

Потенциал действия

Физической основой возбуждения является потенциал действия. По сути своей потенциал действия представляет электрический разряд - быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки). В результате наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса.

Если ввести внутрь живой клетки электрод и измерить мембранный потенциал покоя, он будет иметь отрицательное значение (порядка?70 - ?90 мВ). Это объясняется тем, что суммарный заряд на внутренней стороне мембраны существенно меньше, чем на внешней, хотя с обеих сторон содержатся и катионы, и анионы. Снаружи - на порядок больше ионов натрия, кальция и хлора, внутри - ионов калия и отрицательно заряженных белковых молекул, аминокислот, органических кислот, фосфатов, сульфатов. Надо понимать, что речь идёт именно о заряде поверхности мембраны - в целом среда и внутри, и снаружи клетки заряжена нейтрально.

Потенциал мембраны может изменяться под действием различных стимулов. Искусственным стимулом может служить электрический ток, подаваемый на внешнюю или внутреннюю сторону мембраны через электрод. В естественных условиях стимулом часто служит химический сигнал от соседних клеток, поступающий через синапс или путём диффузной передачи через межклеточную среду. Смещение мембранного потенциала может происходить в отрицательную (гиперполяризация) или положительную (деполяризация) сторону.

Для конкретики рассмотрим нервные клетки. В нервной ткани потенциал действия, как правило, возникает при деполяризации. По степени деполяризации раздражители могут быть подпороговыми, пороговыми и сверхпороговыми. При воздействии подпороговых раздражителей возникает так называемый локальный ответ - местная незначительная деполяризация мембраны, характеризуемая такими свойствами, как декрементность, суммация и градуальность.

Если деполяризация мембраны нейрона достигает некоторого порогового уровня или превышает его (пороговый и сверхпороговый раздражители), клетка возбуждается, и от её тела к аксонам и дендритам распространяется волна электрического сигнала - потенциал действия (рис. 3). Это обусловлено тем, что на мембране клетки находятся ионные каналы. Мембрана клеток возбудимых тканей (нервной, секреторной и мышечной) содержит большое количество потенциалзависимых ионных каналов, способных быстро реагировать на смещение мембранного потенциала. Деполяризация мембраны в первую очередь вызывает открытие потенциалзависимых натриевых каналов. Когда одновременно открывается достаточно много натриевых каналов, положительно заряженные ионы натрия устремляются через них на внутреннюю сторону мембраны.

Рис. 3.

Движущая сила в данном случае обеспечивается градиентом концентрации (с внешней стороны мембраны находится намного больше положительно заряженных ионов натрия, чем внутри клетки) и отрицательным зарядом внутренней стороны мембраны. Поток ионов натрия вызывает ещё большее и очень быстрое изменение мембранного потенциала, которое и называют потенциалом действия (в специальной литературе обозначается ПД).

По достижении значения мембранного потенциала 0 мВ деполяризация продолжается, переходя в стадию реверсии (перезарядки). В этот момент в формирование ПД включаются калиевые потенциал - зависимые каналы (медленные относительно натриевых), а натриевые каналы переходят в инактивированное состояние (закрываются). При достижении мембранного потенциала пикового значения - около 30 мВ - происходит нарастание восстановление его значения - реполяризация, обусловленная током ионов К в противоположную относительно Na сторону (из клетки по градиенту концентрации в межклеточную среду). При достижении исходного значения мембранного потенциала происходит непродолжительная гиперполяризация, обусловленная током ионов Cl в клетку (рис. 4).

Рис. 4.

Согласно закону «всё-или-ничего» мембрана клетки возбудимой ткани либо не отвечает на стимул совсем, либо отвечает с максимально возможной для неё на данный момент силой. То есть, если стимул слишком слаб и порог не достигнут, потенциал действия не возникает совсем; в то же время, пороговый стимул вызовет потенциал действия такой же амплитуды, как и стимул, превышающий пороговый. Это отнюдь не означает, что амплитуда потенциала действия всегда одинакова - один и тот же участок мембраны, находясь в разных состояниях, может генерировать потенциалы действия разной амплитуды.

При подробном рассмотрении ПД можно выделить 6 фаз его развития (рис. 5).

1. Медленная деполяризация - от МП до критического уровня деполяризации (КУД), по сути представляет собой локальный ответ на пороговый раздражитель.

2. Быстрая деполяризация - от КУД до 0 мВ, вызвана лавинообразным потоком ионов Naв клетку.

3. Реверсия (овершут, перехлест) - от 0 мВ до пика деполяризации, открываются K каналы, Naканалы инактивируются.

4. Быстрая реполяризация - от пика деполяризации до КУД, вызвана током ионов K из клетки.

5. Медленнаяреполяризация - от КУД до МП.

6. Гиперполяризация - перехлест через МП с восстановлением его значения, вызвана током ионов Clв клетку.


Рис. 5.

Рефрактерность и возбудимость

Инактивация натриевой системы в процессе генерации потенциала действия приводит к тому, что клетка в этот период не может быть повторно возбуждена, т. е. наблюдается состояние абсолютной рефрактерности. Постепенное восстановление потенциала покоя в процессе реполяризации дает возможность вызвать повторный потенциал действия, но для этого требуется сверхпороговый стимул, так как клетка находится в состоянии относительной рефрактерности.

Исследование возбудимости клетки во время локального ответа или во время отрицательного следового потенциала показало, что генерация потенциала действия возможна при действии стимула ниже порогового значения. Это состояние супернормальности (в фазу медленной реполяризации), или экзальтации (в фазу медленной деполяризации). И наконец, фаза гиперполяризации снижает возбудимость и проявляется в виде субнормального периода.

Продолжительность периода абсолютной рефрактерности ограничивает максимальную частоту генерации потенциалов действия данным типом клеток. Например, при продолжительности периода абсолютной рефрактерности 4 мс максимальная частота равна 250 Гц.

Рис. 6.

Н. Е. Введенский ввел понятие лабильности, или функциональной подвижности, возбудимых тканей. Мерой лабильности является количество потенциалов действия, которое способна генерировать возбудимая ткань в единицу времени. Очевидно, что лабильность возбудимой ткани в первую очередь определяется продолжительностью периода рефрактерности. Наиболее лабильными являются волокна слухового нерва, в которых частота генерации потенциалов действия достигает 1000 Гц.

Потенциа́л де́йствия - волна возбуждения , перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала. По сути своей представляет электрический разряд - быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона , мышечного волокна или железистой клетки), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса , играющего сигнальную (регуляторную) роль.

Рис. 1. Схема распределения зарядов по разные стороны мембраны возбудимой клетки в спокойном состоянии (A ) и при возникновении потенциала действия (B ) (см. объяснения в тексте).

Потенциалы действия могут различаться по своим параметрам в зависимости от типа клетки и даже на различных участках мембраны одной и той же клетки. Наиболее характерный пример различий: потенциал действия сердечной мышцы и потенциал действия большинства нейронов. Тем не менее, в основе любого потенциала действия лежат следующие явления:

    Мембрана живой клетки поляризована - её внутренняя поверхность заряжена отрицательно по отношению к внешней благодаря тому, что в растворе возле её внешней поверхности находится бо́льшее количество положительно заряженных частиц (катионов), а возле внутренней поверхности - бо́льшее количество отрицательно заряженных частиц (анионов).

    Мембрана обладает избирательной проницаемостью - её проницаемость для различных частиц (атомов или молекул) зависит от их размеров, электрического заряда и химических свойств.

    Мембрана возбудимой клетки способна быстро менять свою проницаемостъ для определённого вида катионов, вызывая переход положительного заряда с внешней стороны на внутреннюю (Рис.1 ).

Первые два свойства характерны для всех живых клеток. Третье же является особенностью клеток возбудимых тканей и причиной, по которой их мембраны способны генерировать и проводить потенциалы действия.

Фазы потенциала действия

    Предспайк - процесс медленной деполяризации мембраны до критического уровня деполяризации (местное возбуждение, локальный ответ).

    Пиковый потенциал, или спайк , состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризация мембраны).

    Отрицательный следовой потенциал - от критического уровня деполяризации до исходного уровня поляризации мембраны (следовая деполяризация).

    Положительный следовой потенциал - увеличение мембранного потенциала и постепенное возвращение его к исходной величине (следовая гиперполяризация).

Общие положения

Рис. 2. A. Схематичное изображение идеализированного потенциала действия.B. Реальный потенциал действия пирамидного нейронагиппокампа крысы. Форма реального потенциала действия обычно отличается от идеализированной.

Поляризация мембраны живой клетки обусловлена отличием ионного состава с её внутренней и наружной стороны. Когда клетка находится в спокойном (невозбуждённом) состоянии, ионы по разные стороны мембраны создают относительно стабильную разность потенциалов, называемуюпотенциалом покоя . Если ввести внутрь живой клеткиэлектрод и измерить мембранный потенциал покоя, он будет иметь отрицательное значение (порядка −70 - −90 мВ). Это объясняется тем, что суммарный заряд на внутренней стороне мембраны существенно меньше, чем на внешней, хотя с обеих сторон содержатся икатионы , ианионы . Снаружи - на порядок большеионов натрия ,кальция ихлора , внутри - ионовкалия и отрицательно заряженныхбелковых молекул, аминокислот, органических кислот,фосфатов ,сульфатов . Надо понимать, что речь идёт именно о заряде поверхности мембраны - в целом среда и внутри, и снаружи клетки заряжена нейтрально.

Потенциал мембраны может изменяться под действием различных стимулов. Искусственным стимулом может служить электрический ток , подаваемый на внешнюю или внутреннюю сторону мембраны через электрод. В естественных условиях стимулом часто служит химический сигнал от соседних клеток, поступающий черезсинапс или путёмдиффузной передачи через межклеточную среду. Смещение мембранного потенциала может происходить в отрицательную (гиперполяризация ) или положительную (деполяризация ) сторону.

В нервной ткани потенциал действия, как правило, возникает при деполяризации - если деполяризация мембраны нейрона достигает некоторого порогового уровня или превышает его, клетка возбуждается, и от её тела каксонам идендритам распространяется волна электрического сигнала. (В реальных условиях на теле нейрона обычно возникают постсинаптические потенциалы, которые сильно отличаются от потенциала действия по своей природе - например, они не подчиняются принципу «всё или ничего». Эти потенциалы преобразуются в потенциал действия на особом участке мембраны -аксонном холмике , так что потенциал действия не распространяется на дендриты).

Рис. 3. Простейшая схема, демонстрирующая мембрану с двумя натриевыми каналами в открытом и закрытом состоянии, соответственно

Это обусловлено тем, что на мембране клетки находятся ионные каналы - белковые молекулы, образующие в мембране поры, через которые ионы могут проходить с внутренней стороны мембраны на наружную и наоборот. Большинство каналов ионоспецифичны - натриевый канал пропускает практически только ионы натрия и не пропускает другие (это явление называют селективностью). Мембрана клеток возбудимых тканей (нервной и мышечной) содержит большое количествопотенциал-зависимых ионных каналов, способных быстро реагировать на смещение мембранного потенциала. Деполяризация мембраны в первую очередь вызывает открытие потенциал-зависимых натриевых каналов. Когда одновременно открывается достаточно много натриевых каналов, положительно заряженные ионы натрия устремляются через них на внутреннюю сторону мембраны. Движущая сила в данном случае обеспечиваетсяградиентом концентрации (с внешней стороны мембраны находится намного больше положительно заряженных ионов натрия, чем внутри клетки) и отрицательным зарядом внутренней стороны мембраны (см. Рис. 2). Поток ионов натрия вызывает ещё бо́льшее и очень быстрое изменение мембранного потенциала, которое и называютпотенциалом действия (в специальной литературе обозначается ПД).

Согласно закону «всё-или-ничего» мембрана клетки возбудимой ткани либо не отвечает на стимул совсем, либо отвечает с максимально возможной для неё на данный момент силой. То есть, если стимул слишком слаб и порог не достигнут, потенциал действия не возникает совсем; в то же время, пороговый стимул вызовет потенциал действия такой жеамплитуды , как и стимул, превышающий пороговый. Это отнюдь не означает, что амплитуда потенциала действия всегда одинакова - один и тот же участок мембраны, находясь в разных состояниях, может генерировать потенциалы действия разной амплитуды.

После возбуждения нейрон на некоторое время оказывается в состоянии абсолютной рефрактерности , когда никакие сигналы не могут его возбудить снова, затем входит в фазуотносительной рефрактерности , когда его могут возбудить исключительно сильные сигналы (при этом амплитуда ПД будет ниже, чем обычно). Рефрактерный период возникает из-за инактивации быстрого натриевого тока, то есть инактивации натриевых каналов (см. ниже).

Раздражители

По природе раздражители подразделяют на:
• физические (звук, свет, температура, вибрация, осмотическое давление), особое значение для биологических систем имеют электрические раздражители;
• химические (ионы, гормоны, нейромедиаторы, пептиды, ксенобиотики);
• информационные (голосовые команды, условные знаки, условные стимулы).

По биологическому значению раздражители подразделяют на:
• адекватные – раздражители, для восприятия которых биологическая система имеет специальные приспособления;
• неадекватные – раздражители, не соответствующие природной специализации рецепторных клеток, на которые они действуют.

Раздражитель вызывает возбуждение только в том случае, если он достаточно силен. Порог возбуждения – минимальная сила раздражителя, достаточная для того, чтобы вызвать возбуждение клетки. Выражение «порог возбуждения» имеет несколько синонимов: порог раздражения, пороговая сила раздражителя, порог силы.

Возбуждение как активная реакция клетки на раздражитель

Реакция клетки на внешнее воздействие (раздражение) отличается от реакции небиологических систем следующими особенностями:
• энергией для реакции клетки служит не энергия раздражителя, а энергия, образующаяся в результате метаболизма в самой биологической системе;
• сила и форма реакции клетки не определяется силой и формой внешнего воздействия (если сила раздражителя выше пороговой).

В некоторых специализированных клетках реакция на раздражитель проявляется особенно интенсивно. Такую интенсивную реакцию называют возбуждением. Возбуждение – активная реакция специализированных (возбудимых) клеток на внешнее воздействие, проявляющаяся в том, что клетка начинает выполнять присущие ей специфические функции.

Возбудимая клетка может находиться в двух дискретных состояниях:
• состоянии покоя (готовность к реагированию на внешнее воздействие, совершение внутренней работы);
• состоянии возбуждения (активное выполнение специфических функций, совершение внешней работы).

В организме существует 3 типа возбудимых клеток:
• нервные клетки (возбуждение проявляется генерацией электрического импульса);
• мышечные клетки (возбуждение проявляется сокращением);
• секреторные клетки (возбуждение проявляется выбросом в межклеточное пространство биологически активных веществ).

Возбудимость – способность клетки переходить из состояния покоя в состояние возбуждения при действии раздражителя. Разные клетки имеют различную возбудимость. Возбудимость одной и той же клетки меняется в зависимости от ее функционального состояния.

Возбудимая клетка в состоянии покоя

Мембрана возбудимой клетки поляризована. Это означает, что имеется постоянная разность потенциалов между внутренней и наружной поверхностью клеточной мембраны, которую называют мембранный потенциал (МП). В состоянии покоя величина МП составляет –60…–90 мВ (внутренняя сторона мембраны заряжена отрицательно относительно наружной). Значение МП клетки в состоянии покоя называют потенциалом покоя (ПП). МП клетки можно измерять, разместив один электрод внутри, а другой снаружи клетки (рис. 1 А) .

Уменьшение МП относительно его нормального уровня (ПП) называют деполяризацией , а увеличение – гиперполяризацией . Под реполяризацией понимают восстановление исходного уровня МП после его изменения (см. рис. 1 Б).

Электрические и физиологические проявления возбуждения

Рассмотрим различные проявления возбуждения на примере раздражения клетки электрическим током (рис. 2).

При действии слабых (подпороговых) импульсов электрического тока в клетке развивается электротонический потенциал. Электротонический потенциал (ЭП) – сдвиг мембранного потенциала клетки, вызываемый действием постоянного электрического тока . ЭП есть пассивная реакция клетки на электрический раздражитель; состояние ионных каналов и транспорт ионов при этом не изменяется. ЭП не проявляется физиологической реакцией клетки. Поэтому ЭП не является возбуждением.

При действии более сильного подпорогового тока возникает более пролонгированный сдвиг МП – локальный ответ. Локальный ответ (ЛО) – активная реакция клетки на электрический раздражитель, однако состояние ионных каналов и транспорт ионов при этом изменяется незначительно. ЛО не проявляется заметной физиологической реакцией клетки. ЛО называют местным возбуждением , так как это возбуждение не распространяется по мембранам возбудимых клеток.

При действии порогового и сверхпорогового тока в клетке развивается потенциал действия (ПД). ПД характеризуется тем, что значение МП клетки очень быстро уменьшается до 0 (деполяризация), а затем мембранный потенциал приобретает положительное значение (+20…+30 мВ), т. е. внутренняя сторона мембраны заряжается положительно относительно наружной. Затем значение МП быстро возвращается к исходному уровню. Сильная деполяризация клеточной мембраны во время ПД приводит к развитию физиологических проявлений возбуждения (сокращение, секреция и др.). ПД называют распространяющимся возбуждением , поскольку, возникнув в одном участке мембраны, он быстро распространяется во все стороны.

Механизм развития ПД практически одинаков для всех возбудимых клеток. Механизм сопряжения электрических и физиологических проявлений возбуждения различен для разных типов возбудимых клеток (сопряжение возбуждения и сокращения, сопряжение возбуждения и секреции).

Устройство клеточной мембраны возбудимой клетки

В механизмах развития возбуждения участвуют 4 вида ионов: K+ , Na+ , Ca++ , Cl – (ионы Ca++ участвуют в процессах возбуждения некоторых клеток, например кардиомиоцитов, а ионы Cl – важны для развития торможения). Мембрана клетки, представляющая собой липидный бислой, непроницаема для этих ионов. В мембране существуют 2 типа специализированных интегральных белковых систем, которые обеспечивают транспорт ионов через клеточную мембрану: ионные насосы и ионные каналы.

Ионные насосы и трансмембранные ионные градиенты

Ионные насосы (помпы) – интегральные белки, которые обеспечивают активный перенос ионов против градиента концентрации. Энергией для транспорта служит энергия гидролиза АТФ. Различают Na+ / K+ помпу (откачивает из клетки Na+ в обмен на К+), Ca++ помпу (откачивает из клетки Ca++), Cl– помпу (откачивает из клетки Cl –).

В результате работы ионных насосов создаются и поддерживаются трансмембранные ионные градиенты:
• концентрация Na+, Ca++, Cl – внутри клетки ниже, чем снаружи (в межклеточной жидкости);
• концентрация K+ внутри клетки выше, чем снаружи.

Ионные каналы

Ионные каналы – интегральные белки, которые обеспечивают пассивный транспорт ионов по градиенту концентрации. Энергией для транспорта служит разность концентрации ионов по обе стороны мембраны (трансмембранный ионный градиент).

Неселективные каналы
• пропускают все типы ионов, но проницаемость для ионов K+ значительно выше, чем для других ионов;
• всегда находятся в открытом состоянии.

Селективные каналы обладают следующими свойствами:
• пропускают только один вид ионов; для каждого вида ионов существует свой вид каналов;
• могут находиться в одном из 3 состояний: закрытом, активированном, инактивированном.

Избирательная проницаемость селективного канала обеспечивается селективным фильтром , который образован кольцом из отрицательно заряженных атомов кислорода, которое находится в самом узком месте канала.

Изменение состояния канала обеспечивается работой воротного механизма , который представлен двумя белковыми молекулами. Эти белковые молекулы, так называемые активационные ворота и инактивационные ворота, изменяя свою конформацию, могут перекрывать ионный канал.

В состоянии покоя активационные ворота закрыты, инактивационные ворота открыты (канал закрыт) (рис. 3). При действии на воротную систему сигнала активационные ворота открываются и начинается транспорт ионов через канал (канал активирован). При значительной деполяризации мембраны клетки инактивационные ворота закрываются и транспорт ионов прекращается (канал инактивирован). При восстановлении уровня МП канал возвращается в исходное (закрытое) состояние.

В зависимости от сигнала, который вызывает открытие активационных ворот, селективные ионные каналы подразделяют на:
• хемочувствительные каналы – сигналом к открытию активационных ворот является изменение конформации ассоциированного с каналом белка-рецептора в результате присоединения к нему лиганда;
• потенциалчувствительные каналы – сигналом к открытию активационных ворот является снижение МП (деполяризация) клеточной мембраны до определенного уровня, который называют критическим уровнем деполяризации (КУД).

Механизм формирования потенциала покоя

Мембранный потенциал покоя образуется главным образом благодаря выходу К+ из клетки через неселективные ионные каналы. Утечка из клетки положительно заряженных ионов приводит к тому, что внутренняя поверхность мембраны клетки заряжается отрицательно относительно наружной.

Мембранный потенциал, возникающий в результате утечки К+ , называют «равновесным калиевым потенциалом» (Ек ). Его можно рассчитать по равнению Нернста

где R – универсальная газовая постоянная,
Т – температура (по Кельвину),
F – число Фарадея,
[К+] нар – концентрация ионов К+ снаружи клетки,
[К+] вн – концентрация ионов К+ внутри клетки.

ПП, как правило, очень близок к Ек, но не точно равен ему. Эта разница объясняется тем, что свой вклад в формирование ПП вносят:

• поступление в клетку Na+ и Cl– через неселективные ионные каналы; при этом поступление в клетку Cl– дополнительно гиперполяризует мембрану, а поступление Na+ – дополнительно деполяризует ее; вклад этих ионов в формирование ПП невелик, так как проницаемость неселективных каналов для Cl– и Na + в 2,5 и 25 раза ниже, чем для К+ ;

• прямой электрогенный эффект Na+ /К+ ионного насоса, возникающий в том случае, если ионный насос работает асимметрично (количество переносимых в клетку ионов K+ не равно количеству выносимых из клетки ионов Na+).

Механизм развития потенциала действия

В потенциале действия выделяют несколько фаз (рис. 4):

• фаза деполяризации;
• фаза быстрой реполяризации;
• фаза медленной реполяризации (отрицательный следовый потен­циал);
• фаза гиперполяризации (положительный следовый потенциал).

Фаза деполяризации . Развитие ПД возможно только при действии раздражителей, которые вызывают деполяризацию клеточной мембраны. При деполяризации клеточной мембраны до критического уровня деполяризации (КУД) происходит лавинообразное открытие потенциалчувствительных Na+-каналов. Положительно заряженные ионы Na+ входят в клетку по градиенту концентрации (натриевый ток), в результате чего мембранный потенциал очень быстро уменьшается до 0, а затем приобретает положительное значение. Явление изменения знака мембранного потенциала называют реверсией заряда мембраны.

Фаза быстрой и медленной реполяризации . В результате деполяризации мембраны происходит открытие потенциалчувствительных К+ -каналов. Положительно заряженные ионы К+ выходят из клетки по градиенту концентрации (калиевый ток), что приводит к восстановлению потенциала мембраны. В начале фазы интенсивность калиевого тока высока и реполяризация происходит быстро, к концу фазы интенсивность калиевого тока снижается и реполяризация замедляется.

Фаза гиперполяризации развивается за счет остаточного калиевого тока и за счет прямого электрогенного эффекта активировавшейся Na+ / K+ помпы.

Овершут – период времени, в течение которого мембранный потенциал имеет положительное значение.

Пороговый потенциал – разность между мембранным потенциалом покоя и критическим уровнем деполяризации. Величина порогового потенциала определяет возбудимость клетки – чем больше пороговый потенциал, тем меньше возбудимость клетки.

Изменение возбудимости клетки при развитии возбуждения

Если принять уровень возбудимости клетки в состоянии физиологического покоя за норму, то в ходе развития цикла возбуждения можно наблюдать ее колебания. В зависимости от уровня возбудимости выделяют следующие состояния клетки (см. рис. 4).

• Супернормальная возбудимость (экзальтация ) – состояние клетки, в котором ее возбудимость выше нормальной. Супернормальная возбудимость наблюдается во время начальной деполяризации и во время фазы медленной реполяризации. Повышение возбудимости клетки в эти фазы ПД обусловлено снижением порогового потенциала по сравнению с нормой.

• Абсолютная рефрактерность – состояние клетки, в котором ее возбудимость падает до нуля. Никакой, даже самый сильный, раздражитель не может вызвать дополнительного возбуждения клетки. Во время фазы деполяризации клетка невозбудима, поскольку все ее Na+ -каналы уже находятся в открытом состоянии.

• Относительная рефрактерность – состояние, в котором возбуди­мость клетки значительно ниже нормальной; только очень сильные раздражители могут вызвать возбуждение клетки. Во время фазы реполяризации каналы возвращаются в закрытое состояние и возбудимость клетки постепенно восстанавливается.

• Субнормальная возбудимость характеризуется незначительным снижением возбудимости клетки ниже нормального уровня. Это уменьшение возбудимости происходит вследствие возрастания порогового потенциала во время фазы гиперполяризации.

В нервных волокнах сигналы передаются с помощью потенциалов действия, которые представляют собой быстрые изменения мембранного потенциала, быстро распространяющиеся вдоль мембраны нервного волокна. Каждый потенциал действия начинается со стремительного сдвига потенциала покоя от нормального отрицательного значения до положительной величины, затем он почти так же быстро возвращается к отрицательному потенциалу. При проведении нервного сигнала потенциал действия движется вдоль нервного волокна вплоть до его окончания.

На рисунке показаны изменения, возникающие на мембране во время потенциала действия, с переносом положительных зарядов внутрь волокна вначале и возвращением положительных зарядов наружу в конце. В нижней части рисунка графически представлены последовательные изменения мембранного потенциала в течение нескольких 1/10000 сек, иллюстрирующие взрывное начало потенциала действия и почти столь же быстрое восстановление.

Стадия покоя . Эта стадия представлена мембранным потенциалом покоя, который предшествует потенциалу действия. Мембрана во время этой стадии поляризована в связи с наличием отрицательного мембранного потенциала, равного -90 мВ.

Фаза деполяризации . В это время мембрана внезапно становится высокопроницаемой для ионов натрия, позволяя огромному числу положительно заряженных ионов натрия диффундировать внутрь аксона. Нормальное поляризованное состояние в -90 мВ немедленно нейтрализуется поступающими внутрь положительно заряженными ионами натрия, в результате потенциал стремительно нарастает в положительном направлении. Этот процесс называют деполяризацией, В крупных нервных волокнах значительный избыток входящих внутрь положительных ионов натрия обычно приводит к тому, что мембранный потенциал «проскакивает» за пределы нулевого уровня, становясь слегка положительным. В некоторых более мелких волокнах, как и в большинстве нейронов центральной нервной системы, потенциал достигает нулевого уровня, не «перескакивая» его.

Фаза реполяризации . В течение нескольких долей миллисекунды после резкого повышения проницаемости мембраны для ионов натрия, натриевые каналы начинают закрываться, а калиевые - открываться. В результате быстрая диффузия ионов калия наружу восстанавливает нормальный отрицательный мембранный потенциал покоя. Этот процесс называют реполя-ризацией мембраны.

Временной ход потенциала действия в нейроне ; показаны последовательные фазы потенциала действия, описанные в тексте.

Для более полного понимания факторов , являющихся причиной деполяризации и реполяризации, необходимо изучить особенности двух других типов транспортных каналов в мембране нервного волокна: электроуправляемых натриевых и калиевых каналов.

Электроупавляемые натриевые и калиевые каналы . Необходимым участником процессов деполяризации и реполяризации во время развития потенциала действия в мембране нервного волокна является электроуправляемый натриевый канал. Электроуправляемый калиевый канал также играет важную роль в увеличении скорости реполяризации мембраны. Оба типа электроуправляемых каналов существуют дополнительно к Na + /K + -насосу и каналам К + /Na + -утечки.

Электроуправляемый натриевый канал . В верхней части рисунка показан электроуправляемый натриевый канал в трех различных состояниях. Этот канал имеет двое ворот: одни вблизи наружной части канала, которые называют активационными воротами, другие - у внутренней части канала, которые называют инактивационными воротами. В верхней левой части рисунка изображено состояние этих ворот в покое, когда мембранный потенциал покоя равен -90 мВ. В этих условиях активационные ворота закрыты и препятствуют поступлению ионов натрия внутрь волокна.

Активация натриевого канала . Когда мембранный потенциал покоя смещается в направлении менее отрицательных значений, поднимаясь от -90 мВ в сторону нуля, на определенном уровне (обычно между -70 и -50 мВ) происходит внезапное конформационное изменение актива-ционных ворот, в результате они переходят в полностью открытое состояние. Это состояние называют активированным состоянием канала, при котором ионы натрия могут свободно входить через него внутрь волокна; при этом натриевая проницаемость мембраны возрастает в диапазоне от 500 до 5000 раз.

Инактивация натриевого канала . В верхней правой части рисунке показано третье состояние натриевого канала. Увеличение потенциала, открывающее активационные ворота, закрывает инактивационные ворота. Однако инактивационные ворота закрываются в течение нескольких десятых долей миллисекунды после открытия активационных ворот. Это значит, что конформационное изменение, приводящее к закрытию инактивационных ворот, - процесс более медленный, чем конформационное изменение, открывающее активационные ворота. В результате через несколько десятых долей миллисекунды после открытия натриевого канала инактивационные ворота закрываются, и ионы натрия не могут более проникать внутрь волокна. С этого момента мембранный потенциал начинает возвращаться к уровню покоя, т.е. начинается процесс реполяризации.

Существует другая важная характеристикая процесса инактивации натриевого канала : инактивационные ворота не открываются повторно до тех пор, пока мембранный потенциал не вернется к значению, равному или близкому к уровню исходного потенциала покоя. В связи с этим повторное открытие натриевых каналов обычно невозможно без предварительной реполяризации нервного волокна.


Потенциал действия клетки рабочего миокарда .
Быстрое развитие деполяризации и продолжительная реполяризация. Замедленная реполяризация (плато) переходит в быструю реполяризацию.

Вернуться в оглавление раздела "

Лекция 2 . Общая физиология возбудимых тканей. Потенциал покоя. Потенциал действия .

۩ Сущность процесса возбуждения . Сущность процесса возбуждения можно сформулировать следующим образом. Все клетки организма имеют электрический заряд, который создается неодинаковой концентрацией анионов и катионов внутри и вне клетки. Различная концентрация анионов и катионов внутри и вне клетки является следствием неодинаковой проницаемости клеточной мембраны для различных ионов и работы ионных насосов. Процесс возбуждения начинается с действия на возбудимую клетку раздражителя. Сначала очень быстро повышается проницаемость её мембраны для ионов натрия и быстро возвращается к норме, затем – для ионов калия и также быстро, но с некоторым отставанием возвращается к норме. Вследствие этого ионы перемещаются в клетку и из клетки согласно электрохимическому градиенту – это и есть процесс возбуждения. Возбуждение возможно только в том случае, если клетка постоянно поддерживает потенциал покоя (мембранный потенциал) и при её раздражении быстро изменяется проницаемость клеточной мембраны.

۩ Потенциал покоя . Потенциал покоя (ПП) – это разность электрических потенциалов между внутренней и наружной средами клетки в состоянии её покоя. При этом внутри клетки регистрируется отрицательный заряд. Величина ПП в различных клетках различна. Так, в волокнах скелетной мышцы регистрируется ПП равный 60-90 мВ, в нейронах – 50-80 мВ, в гладких мышцах – 30-70 мВ, в сердечной мышце – 80-90 мВ. Органеллы клеток имеют свои вариабельные мембранные потенциалы.

Непосредственной причиной существования потенциала покоя является неодинаковая концентрация анионов и катионов внутри и вне клетки (смотри таб.1!).

Таблица 1. Внутри- и внеклеточные концентрации ионов в мышечных клетках.

Внутриклеточная концентрация, мМ

Внеклеточная концентрация, мМ

A- (крупномолекулярные внутриклеточные анионы)

A-(крупномолекулярные внутриклеточные анионы)

Небольшое количество

Небольшое количество

Очень мало

Основное количество

Неравномерное расположение ионов внутри и вне клетки является следствием неодинаковой проницаемости клеточной мембраны для различных ионов и работы ионных насосов, транспортирующих ионы в клетку и из клетки вопреки электрохимическому градиенту. Проницаемость – это её способность пропускать воду, незаряженные и заряженные частицы согласно законам диффузии и фильтрации. Она определяется:

    Размерами каналов и размерами частиц;

    Растворимостью частиц в мембране (клеточная мембрана проницаема для растворимых в ней липидов и непроницаема для пептидов).

Проводимость – это способность заряженных частиц проходить через клеточную мембрану согласно электрохимическому градиенту.

Различная проницаемость различных ионов играет важную роль в формировании ПП:

    Калий является основным ионом, обеспечивающим формирование ПП, так как его проницаемость в 100 раз выше, чем проницаемость для натрия. При уменьшении концентрации калия в клетке ПП уменьшается, а при увеличении – увеличивается. Он может входить и выходить из клетки. В покое количество входящих ионов калия и выходящих его ионов уравновешивается и устанавливается так называемый калиевый равновесный потенциал, который рассчитывается по уравнению Нернста. Механизм его таков: так как электрический и конценрационный градиенты противодействуют друг другу, то калий стремится выйти наружу по концентрационному градиенту, а отрицательный заряд внутри клетки и положительный вне клетки препятствует этому. Тогда количество входящих ионов становится равным количеству выходящих ионов.

    Натрий входит в клетку. Его проницаемость мала по сравнению с проницаемостью калия, поэтому его вклад в формирование ПП невелик.

    Хлор входит в клетку в незначительном количестве, так как проницаемость мембраны для него невелика, причем он уравновешивается количеством ионов натрия (противоположные заряды притягиваются). Следовательно, его вклад в формирование ПП невелик.

    Органические анионы (глютамат, аспартат, органические фосфаты, сульфаты) вообще не могут выйти из клетки, так как они имеют большие размеры. Поэтому за счет них внутри клетки формируется отрицательный заряд.

    Роль ионов кальция в формировании ПП заключается в том, что они взаимодействуют с наружными отрицательными зарядами мембраны клетки и отрицательными карбоксильными группами интерстиция, нейтрализуя их, что ведет к стабилизации ПП.

Кроме выше перечисленных ионов, в формировании ПП играют важную роль и поверхностные заряды мембраны (в основном отрицательные). Их формируют гликопротеиды, гликолипиды и фосфолипиды: фиксированные наружные отрицательные заряды, нейтрализуя положительные заряды внешней поверхности мембраны, уменьшают ПП, а фиксированные внутренние отрицательные заряды мембраны, напротив, увеличивают ПП, суммируясь с анионами внутри клетки. Таким образом, потенциал покоя - это алгебраическая сумма всех положительных и отрицательных зарядов ионов вне и внутри клетки и поверхностных зарядов клеточной мембраны .

Роль ионных насосов в формировании ПП . Ионный насос – это молекула белка, которая обеспечивает перенос иона с непосредственной затратой энергии вопреки электрическому и концентрационному градиентам. В результате сопряженного транспорта натрия и калия поддерживается постоянная разность концентраций этих ионов внутри и вне клетки. Одна молекула АТФ обеспечивает один цикл работы Na/K-насоса – перенос трех ионов натрия за пределы клетки и двух ионов калия внутрь клетки. Таким образом, увеличивается ПП. Нормальная величина потенциала покоя является необходимым условием для формирования потенциала действия, то есть для формирования процесса возбуждения.

۩Потенциал действия . Потенциал действия – это электрофизиологический процесс, который выражается в быстром колебании мембранного потенциала вследствие изменения проницаемости мембраны и диффузии ионов в клетку и из клетки. Роль ПД заключается в обеспечении передачи сигналов между нервными клетками, нервными центрами и рабочими органами, в мышцах ПД обеспечивает процесс электромеханического сопряжения. ПД подчиняется закону «всё или ничего». Если сила раздражения мала, то возникает локальный потенциал, который не распространяется.

Потенциал действия состоит из трех фаз: деполяризации, то есть исчезновения ПП; инверсии – изменения знака заряда клетки на обратный; реполяризации – восстановление исходного МП.

Механизм возникновения потенциала действия .

Фаза деполяризации . При действии раздражителя на клетку начальная частичная деполяризация клеточной мембраны происходит без изменения ее проницаемости для ионов. Когда деполяризация достигает примерно 50% пороговой величины, возрастает проницаемость мембраны для Na + , причем в первый момент сравнительно медленно. В этот период движущей силой, обеспечивающей движение Na + в клетку, являются концентрационный и электрический градиенты. Вспомним, что клетка внутри заряжена отрицательно (разноименные заряды притягиваются), а концентрация Na + вне клетки в 12 раз больше, чем внутри клетки. Условием, обеспечивающим дальнейший вход Na + в клетку, является увеличение проницаемости клеточной мембраны, который определяется состоянием воротного механизма натриевых каналов. Воротный механизм натриевых каналов расположен на внешней и внутренней стороне клеточной мембраны, воротный механизм калиевых каналов – только на внутренней стороне мембраны. В каналах для натрия имеются активационные m-ворота, которые расположены с внешней стороны клеточной мембраны, и инактивационные h-ворота, расположенные с внутренней стороны мембраны. В условиях покоя активационные m-ворота закрыты, инактивационные h-ворота открыты. Калиевые активационные ворота закрыты, а инактивационных калиевых ворот нет. Когда деполяризация клетки достигает критической величины, которая обычно составляет 50 мВ, проницаемость мембраны для Na + резко возрастает, так как открывается большое количество потенциалзависимых m-ворот натриевых каналов и ионы натрия лавиной устремляются в клетку. Развивающаяся деполяризация клеточной мембраны вызывает дополнительное увеличение ее проницаемости и, соответственно, проводимости натрия: открываются все новые и новые активационные m-ворота. В итоге ПП исчезает, то есть становится равным нулю. Фаза деполяризации на этом заканчивается. Ее длительность составляет примерно 0,2-0,5 мс.

Фаза инверсии . Процесс перезарядки мембраны представляет собой вторую фазу ПД – фазу инверсии. Фаза инверсии делится на восходящую и нисходящую составляющие. Восходящая часть . После исчезновения ПП вход в клетку ионов натрия продолжается, так как натриевые активационные m-ворота еще открыты. В результате заряд внутри клетки становится положительным, а снаружи-отрицательным. В течение доли миллисекунды ионы натрия еще продолжают входить в клетку. Таким образом, вся восходящая часть пика ПД обеспечивается в основном входом Na + в клетку. Нисходящая составляющая фазы инверсии . Примерно через 0,2-0,5 мс после начала деполяризации рост ПД прекращается в результате закрытия натриевых инактивационных h-ворот и открытия калиевых активационных ворот. Поскольку калий находится преимущественно внутри клетки, он, согласно концентрационному градиенту, начинает быстро выходить из нее, вследствие чего уменьшается число положительно заряженных ионов в клетке. Заряд клетки снова начинает уменьшаться. Во время нисходящей составляющей фазы инверсии выходу ионов калия из клетки способствует также и электрический градиент. К + выталкивается положительным зарядом из клетки и притягивается отрицательным зарядом снаружи клетки. Так продолжается до полного исчезновения положительного заряда внутри клетки. Калий выходит из клетки не только по управляемым каналам, но и по неуправляемым каналам – каналам утечки. Амплитуда ПД складывается из величины ПП и величины фазы инверсии, составляющей у разных клеток 10-50 мВ.

Фаза реполяризации . Пока активационные калиевые каналы открыты, K + еще продолжает выходить из клетки, согласно химическому градиенту. Заряд внутри клетки становится отрицательным, а снаружи – положительным, следовательно, электрический градиент резко тормозит выход ионов калия из клетки. Но так как сила химического градиента больше силы электрического градиента, ионы калия продолжают очень медленно выходить из клетки. Затем активационные калиевые ворота закрываются, остается только выход ионов калия по каналам утечки, то есть по концентрационному градиенту через неуправляемые каналы.

Таким образом, ПД вызывается циклическим процессом поступления ионов натрия в клетку и последующего выхода калия из нее. Роль Са 2+ в возникновении ПД в нервных клетках незначительна. Однако Са 2+ играет очень важную роль в возникновении ПД сердечной мышцы, в передаче импульсов от одного нейрона к другому, от нервного волокна к мышечному, в обеспечении мышечного сокращения.

Вслед за ПД возникают следовые явления (характерные для нейронов) – сначала следовая гиперполяризация, а затем следовая деполяризация. Следовая гиперполяризация клеточной мембраны обычно является следствием еще сохраняющейся повышенной проницаемости мембраны для ионов калия. Следовая деполяризация связана с кратковременным повышением проницаемости мембраны для Na + и входом его в клетку согласно химическому и электрическому градиентам.

Кроме этого существуют: а) так называемая фаза абсолютной рефрактерности , или полная невозбудимость клетки. Она приходится на пик ПД и продолжатся 1-2 мс; и б) фаза относительной рефрактерности – период частичного восстановления клетки, когда сильное раздражение может вызвать новое возбуждение. Относительная рефрактерность соответствует конечной части фазы реполяризации и следовой гиперполяризации клеточной мембраны. В нейронах вслед за гиперполяризацией возможна частичная деполяризация клеточной мембраны. В этот период очередной потенциал действия можно вызвать более слабым раздражением, так как МП несколько меньше обычного. Этот период называется фазой экзальтации (период повышенной возбудимости).

Скорость протекания фазовых изменений возбудимости клетки определяет ее лабильность. Лабильность , или функциональная подвижность, - это скорость протекания одного цикла возбуждения. Мерой лабильности возбудимого образования является максимальное число ПД, которое он может воспроизвести в 1 секунду. Обычно возбуждение продолжается менее 1 мс и подобно взрыву. Такой «взрыв» протекает мощно, но быстро завершается.

Мышцы, отличияДокумент

... . Возбудимость ткани и ее мера. Законы раздражения возбудимых тканей : силы, времени действия раздражителя... потенциал покоя (МПП); 2) мембранный потенциал действия (МПД); 3) потенциал градиента основного обмена (метаболический потенциал ). Потенциал ...