Определение функции распределения. Функция распределения вероятностей случайной величины и ее свойства Точки разрыва функции распределения непрерывной случайной величины

Даны определения Функции распределения случайной величины и Плотности вероятности непрерывной случайной величины. Эти понятия активно используются в статьях о статистике сайта . Рассмотрены примеры вычисления Функции распределения и Плотности вероятности с помощью функций MS EXCEL .

Введем базовые понятия статистики, без которых невозможно объяснить более сложные понятия.

Генеральная совокупность и случайная величина

Пусть у нас имеется генеральная совокупность (population) из N объектов, каждому из которых присуще определенное значение некоторой числовой характеристики Х.

Примером генеральной совокупности (ГС) может служить совокупность весов однотипных деталей, которые производятся станком.

Поскольку в математической статистике, любой вывод делается только на основании характеристики Х (абстрагируясь от самих объектов), то с этой точки зрения генеральная совокупность представляет собой N чисел, среди которых, в общем случае, могут быть и одинаковые.

В нашем примере, ГС - это просто числовой массив значений весов деталей. Х – вес одной из деталей.

Если из заданной ГС мы выбираем случайным образом один объект, имеющей характеристику Х, то величина Х является случайной величиной . По определению, любая случайная величина имеет функцию распределения , которая обычно обозначается F(x).

Функция распределения

Функцией распределения вероятностей случайной величины Х называют функцию F(x), значение которой в точке х равно вероятности события X

F(x) = P(X

Поясним на примере нашего станка. Хотя предполагается, что наш станок производит только один тип деталей, но, очевидно, что вес изготовленных деталей будет слегка отличаться друг от друга. Это возможно из-за того, что при изготовлении мог быть использован разный материал, а условия обработки также могли слегка различаться и пр. Пусть самая тяжелая деталь, произведенная станком, весит 200 г, а самая легкая - 190 г. Вероятность того, что случайно выбранная деталь Х будет весить меньше 200 г равна 1. Вероятность того, что будет весить меньше 190 г равна 0. Промежуточные значения определяются формой Функции распределения. Например, если процесс настроен на изготовление деталей весом 195 г, то разумно предположить, что вероятность выбрать деталь легче 195 г равна 0,5.

Типичный график Функции распределения для непрерывной случайной величины приведен на картинке ниже (фиолетовая кривая, см. файл примера ):

В справке MS EXCEL Функцию распределения называют Интегральной функцией распределения (Cumulative Distribution Function , CDF ).

Приведем некоторые свойства Функции распределения:

  • Функция распределения F(x) изменяется в интервале , т.к. ее значения равны вероятностям соответствующих событий (по определению вероятность может быть в пределах от 0 до 1);
  • Функция распределения – неубывающая функция;
  • Вероятность того, что случайная величина приняла значение из некоторого диапазона плотность вероятности равна 1/(0,5-0)=2. А для с параметром лямбда =5, значение плотности вероятности в точке х=0,05 равно 3,894. Но, при этом можно убедиться, что вероятность на любом интервале будет, как обычно, от 0 до 1.

    Напомним, что плотность распределения является производной от функции распределения , т.е. «скоростью» ее изменения: p(x)=(F(x2)-F(x1))/Dx при Dx стремящемся к 0, где Dx=x2-x1. Т.е. тот факт, что плотность распределения >1 означает лишь, что функция распределения растет достаточно быстро (это очевидно на примере ).

    Примечание : Площадь, целиком заключенная под всей кривой, изображающей плотность распределения , равна 1.

    Примечание : Напомним, что функцию распределения F(x) называют в функциях MS EXCEL интегральной функцией распределения . Этот термин присутствует в параметрах функций, например в НОРМ.РАСП (x; среднее; стандартное_откл; интегральная ). Если функция MS EXCEL должна вернуть Функцию распределения, то параметр интегральная , д.б. установлен ИСТИНА. Если требуется вычислить плотность вероятности , то параметр интегральная , д.б. ЛОЖЬ.

    Примечание : Для дискретного распределения вероятность случайной величине принять некое значение также часто называется плотностью вероятности (англ. probability mass function (pmf)). В справке MS EXCEL плотность вероятности может называть даже "функция вероятностной меры" (см. функцию БИНОМ.РАСП() ).

    Вычисление плотности вероятности с использованием функций MS EXCEL

    Понятно, что чтобы вычислить плотность вероятности для определенного значения случайной величины, нужно знать ее распределение.

    Найдем плотность вероятности для N(0;1) при x=2. Для этого необходимо записать формулу =НОРМ.СТ.РАСП(2;ЛОЖЬ) =0,054 или =НОРМ.РАСП(2;0;1;ЛОЖЬ) .

    Напомним, что вероятность того, что непрерывная случайная величина примет конкретное значение x равна 0. Для непрерывной случайной величины Х можно вычислить только вероятность события, что Х примет значение, заключенное в интервале (а; b).

    Вычисление вероятностей с использованием функций MS EXCEL

    1) Найдем вероятность, что случайная величина, распределенная по (см. картинку выше), приняла положительное значение. Согласно свойству Функции распределения вероятность равна F(+∞)-F(0)=1-0,5=0,5.

    НОРМ.СТ.РАСП(9,999E+307;ИСТИНА) -НОРМ.СТ.РАСП(0;ИСТИНА) =1-0,5.
    Вместо +∞ в формулу введено значение 9,999E+307= 9,999*10^307, которое является максимальным числом, которое можно ввести в ячейку MS EXCEL (так сказать, наиболее близкое к +∞).

    2) Найдем вероятность, что случайная величина, распределенная по , приняла отрицательное значение. Согласно определения Функции распределения, вероятность равна F(0)=0,5.

    В MS EXCEL для нахождения этой вероятности используйте формулу =НОРМ.СТ.РАСП(0;ИСТИНА) =0,5.

    3) Найдем вероятность того, что случайная величина, распределенная по стандартному нормальному распределению , примет значение, заключенное в интервале (0; 1). Вероятность равна F(1)-F(0), т.е. из вероятности выбрать Х из интервала (-∞;1) нужно вычесть вероятность выбрать Х из интервала (-∞;0). В MS EXCEL используйте формулу =НОРМ.СТ.РАСП(1;ИСТИНА) - НОРМ.СТ.РАСП(0;ИСТИНА) .

    Все расчеты, приведенные выше, относятся к случайной величине, распределенной по стандартному нормальному закону N(0;1). Понятно, что значения вероятностей зависят от конкретного распределения. В статье функции распределения найти точку, для которой F(х)=0,5, а затем найти абсциссу этой точки. Абсцисса точки =0, т.е. вероятность, того что случайная величина Х примет значение <0, равна 0,5.

    В MS EXCEL используйте формулу =НОРМ.СТ.ОБР(0,5) =0.

    Однозначно вычислить значение случайной величины позволяет свойство монотонности функции распределения.

    Обратная функция распределения вычисляет , которые используются, например, при . Т.е. в нашем случае число 0 является 0,5-квантилем нормального распределения . В файле примера можно вычислить и другой квантиль этого распределения. Например, 0,8-квантиль равен 0,84.

    В англоязычной литературе обратная функция распределения часто называется как Percent Point Function (PPF).

    Примечание : При вычислении квантилей в MS EXCEL используются функции: НОРМ.СТ.ОБР() , ЛОГНОРМ.ОБР() , ХИ2.ОБР(), ГАММА.ОБР() и т.д. Подробнее о распределениях, представленных в MS EXCEL, можно прочитать в статье .

    Результат любого случайного эксперимента можно характеризовать качественно и количественно. Качественный результат случайного эксперимента - случайное событие . Любая количественная характеристика , которая в результате случайного эксперимента может принять одно из некоторого множества значений, - случайная величина. Случайная величина является одним из центральных понятий теории вероятностей.

    Пусть - произвольное вероятностное пространство. Случайной величиной называется действительная числовая функция x =x (w ), w W , такая, что при любом действительном x .

    Событие принято записывать в виде x < x . В дальнейшем случайные величины будем обозначать строчными греческими буквами x , h , z , …

    Случайной величиной является число очков, выпавших при бросании игральной кости, или рост случайно выбранного из учебной группы студента. В первом случае мы имеем дело с дискретной случайной величиной (она принимает значения из дискретного числового множества M= {1, 2, 3, 4, 5, 6} ; во втором случае - с непрерывной случайной величиной (она принимает значения из непрерывного числового множества - из промежутка числовой прямой I =).

    Каждая случайная величина полностью определяется своей функцией распределения .

    Если x .- случайная величина, то функция F (x ) = F x (x ) = P (x < x ) называется функцией распределения случайной величины x . Здесь P (x < x ) - вероятность того, что случайная величина x принимает значение, меньшее x .

    Важно понимать, что функция распределения является “паспортом” случайной величины: она содержит всю информация о случайной величине и поэтому изучение случайной величины заключается в исследовании ее функции распределения, которую часто называют просто распределением .

    Функция распределения любой случайной величины обладает следующими свойствами:

    Если x - дискретная случайная величина, принимающая значения x 1 < x 2 < … < x i < … с вероятностями p 1 < p 2 < … < p i < …, то таблица вида

    x 1 x 2 x i
    p 1 p 2 p i

    называется распределением дискретной случайной величины .

    Функция распределения случайной величины, с таким распределением, имеет вид

    У дискретной случайной величины функция распределения ступенчатая. Например, для случайного числа очков, выпавших при одном бросании игральной кости, распределение, функция распределения и график функции распределения имеют вид:

    1 2 3 4 5 6
    1/6 1/6 1/6 1/6 1/6 1/6

    Если функция распределения F x (x ) непрерывна, то случайная величина x называется непрерывной случайной величиной.

    Если функция распределения непрерывной случайной величины дифференцируема , то более наглядное представление о случайной величине дает плотность вероятности случайной величины p x (x ), которая связана с функцией распределения F x (x ) формулами

    и .

    Отсюда, в частности, следует, что для любой случайной величины .

    При решении практических задач часто требуется найти значение x , при котором функция распределения F x (x ) случайной величины x принимает заданное значение p , т.е. требуется решить уравнение F x (x ) = p . Решения такого уравнения (соответствующие значения x ) в теории вероятностей называются квантилями.

    Квантилью x p (p -квантилью, квантилью уровня p ) случайной величины , имеющей функцию распределения F x (x ), называют решение x p уравнения F x (x ) = p , p (0, 1). Для некоторых p уравнение F x (x ) = p может иметь несколько решений, для некоторых - ни одного. Это означает, что для соответствующей случайной величины некоторые квантили определены неоднозначно, а некоторые кванитили не существуют.

    Функция распределения вероятностей и ее свойства.

    Функцией распределения вероятностей F(x) случайной величины Х в точке х называется вероятность того, что в результате опыта случайная величина примет значение, меньше, чем х, т.е. F(x)=P{X < х}.
    Рассмотрим свойства функции F(x).

    1. F(-∞)=lim (x→-∞) F(x)=0. Действительно, по определению, F(-∞)=P{X < -∞}. Событие (X < -∞) является невозможным событием: F(-∞)=P{X < - ∞}=p{V}=0.

    2. F(∞)=lim (x→∞) F(x)=1, так как по определению, F(∞)=P{X < ∞}. Событие Х < ∞ является достоверным событием. Следовательно, F(∞)=P{X < ∞}=p{U}=1.

    3. Вероятность того, что случайная величина примет значение из интервала [Α Β] равна приращению функции распределения вероятностей на этом интервале. P{Α ≤X<Β}=F(Β)-F(Α).

    4. F(x 2)≥ F(x 1), если x 2, > x 1 , т.е. функция распределения вероятностей является неубывающей функцией.

    5. Функция распределения вероятностей непрерывна слева. FΨ(x o -0)=limFΨ(x)=FΨ(x o) при х→ x o

    Различия между функциями распределения вероятностей дискретной и непрерывной случайных величин хорошо иллюстрировать графиками. Пусть, например, дискретная случайная величина имеет n возможных значений, вероятности которых равны P{X=x k }=p k , k=1,2,..n. Если x ≤ x 1 , то F(Х)=0, так как левее х нет возможных значений случайной величины. Если x 1 < x ≤ x 2 , то левее х находится всего одно возможное значение, а именно, значение х 1 .

    Значит, F(x)=P{X=x 1 }=p 1 .При x 2 < x ≤ x 3 слева от х находится уже два возможных значения, поэтому F(x)=P{X=x 1 }+P{X=x 2 }=p 1 +p 2 . Рассуждая аналогично,приходим к выводу, что если х k < x≤ x k+1 , то F(x)=1, так как функция будет равна сумме вероятностей всех возможных значений, которая по условию нормировки равна еденице. Таким образом, график функции распределения дискретной случайной величины является ступенчатым. Возможные значения непрерывной величины располагаются плотно на интервале задания этой величины, что обеспечивает плавное возрастания функции распределения F(x), т.е. ее непрерывность.

    Рассмотрим вероятность попадания случайной величины в интервал , Δx>0: P{x≤X< x+Δx}=F(x+ Δx)-F(x). Перейдем к пределу при Δx→0:

    lim (Δx→0) P{x≤ X < x+Δx}=lim (Δx→0) F(x+Δx)-F(x). Предел равен вероятности того, что случайная величина примет значение, равное х. Если функция F(x) непрерывна в точке х, то lim (Δx→0) F(x+Δx)=F(x), т.е. P{X=x}=0.

    Если F(x) имеет разрыв в точке х, то вероятность P{X=x} будет равна скачку функции в этой точке. Таким образом, вероятность появления любого возможного значения для непрерывной величины равна нулю. Выражение P{X=x}=0 следует понимать как предел вероятности попадания случайной величины в бесконечно малую окрестность точки х при P{Α< X≤ Β},P{Α ≤ X< Β},P{Α< X< Β},P{Α ≤ X≤ Β} равны, если Х - непрерывная случайная величина.

    Для дискретных величин эти вероятности неодинаковы в том случае, когда границы интервала Α и(или) Β совпадают с возможными значениями случайной величин. Для дискретной случайной величины необходимо строго учитывать тип неравенства в формуле P{Α ≤X<Β}=F(Β)-F(Α).

    3. Функция распределения является неубывающей : если , то

    4. Функция распределения непрерывна слева : для любого .

    Примечание . Последнее свойство обозначает, какие значения принимает функция распределения в точках разрыва. Иногда определение функции распределения формулируют с использованием нестрогого неравенства: . В этом случае непрерывность слева заменяется на непрерывность справа: при . Никакие содержательные свойства функции распределения при этом не меняются, поэтому данный вопрос является лишь терминологическим.

    Свойства 1-4 являются характеристическими, т.е. любая функция , удовлетворяющая этим свойствам, является функцией распределения некоторой случайной величины.

    Функция распределения задает распределение вероятностей случайной величины однозначно. Фактически, она является универсальным и наиболее наглядным способом описания этого распределения.

    Чем сильнее функция распределения растет на заданном интервале числовой оси, тем выше вероятность попадания случайной величины в этот интервал. Если вероятность попадания в интервал равна нулю, то функция распределения на нем постоянна.

    В частности, вероятность того, что случайная величина примет заданное значение , равна скачку функции распределения в данной точке:

    .

    Если функция распределения непрерывна в точке , то вероятность принять данное значение для случайной величины равна нулю. В частности, если функция распределения непрерывна на всей числовой оси (при этом и соответствующее распределение называется непрерывным ), то вероятность принять любое заданное значение равна нулю.

    Из определения функции распределения вытекает, что вероятность попадания случайной величины в интервал, замкнутый слева и открытый справа, равна:

    С помощью данной формулы и указанного выше способа нахождения вероятности попадания в любую заданную точку, легко определяются вероятности попадания случайной величины в интервалы других типов: , и . Далее, по теореме о продолжении меры, можно однозначно продолжить меру на все борелевские множества числовой прямой . Для того, чтобы применить эту теорему, требуется показать, что таким образом определенная на интервалах мера является на них сигма-аддитивной; при доказательстве этого в точности используются свойства 1-4 (в частности, свойство непрерывности слева 4, поэтому отбросить его нельзя).

    Генерация случайной величины, имеющей заданное распределение

    Рассмотрим случайную величину , имеющую функцию распределения . Предположим, что непрерывна . Рассмотрим случайную величину

    .

    Легко показать, что тогда будет иметь равномерное распределение на отрезке .

    В предыдущем n° мы ввели в рассмотрение ряд распределения как исчерпывающую характеристику (закон распределения) прерывной случайной величины. Однако эта характеристика не является универсальной; она существует только для прерывных случайных величин. Нетрудно убедиться, что для непрерывной случайной величины такой характеристики построить нельзя. Действительно, непрерывная случайная величина имеет бесчисленное множество возможных значений, сплошь заполняющих некоторый промежуток (так называемое «счетное множество»). Составить таблицу, в которой были бы перечислены все возможные значения такой случайной величины, невозможно. Кроме того, как мы увидим в дальнейшем, каждое отдельное значение непрерывной случайной величины обычно не обладает никакой отличной от нуля вероятностью. Следовательно, для непрерывной случайной величины не существует ряда распределения в том смысле, в каком он существует для прерывной величины. Однако различные области возможных значений случайной величины все же не являются одинаково вероятными, и для непрерывной величины существует «распределение вероятностей», хотя и не в том смысле, как для прерывной.

    Для количественной характеристики этого распределения вероятностей удобно воспользоваться не вероятностью события , а вероятностью события , где – некоторая текущая переменная. Вероятность этого события, очевидно, зависит от , есть некоторая функция от . Эта функция называется функцией распределения случайной величины и обозначается :

    . (5.2.1)

    Функцию распределения иногда называют также интегральной функцией распределения или интегральным законом распределения.

    Функция распределения – самая универсальная характеристика случайной величины. Она существует для всех случайных величин: как прерывных, так и непрерывных. Функция распределения полностью характеризует случайную величину с вероятностной точки зрения, т.е. является одной из форм закона распределения.

    Сформулируем некоторые общие свойства функции распределения.

    1. Функция распределения есть неубывающая функция своего аргумента, т.е. при .

    2. На минус бесконечности функция распределения равна нулю:.

    3. На плюс бесконечности функция распределения равна единице: .

    Не давая строгого доказательства этих свойств, проиллюстрируем их с помощью наглядной геометрической интерпретации. Для этого будем рассматривать случайную величину как случайную точку на оси Ох (рис. 5.2.1), которая в результате опыта может занять то или иное положение. Тогда функция распределения есть вероятность того, что случайная точка в результате опыта попадет левее точки .

    Будем увеличивать , т. е. перемещать точку вправо по оси абсцисс. Очевидно, при этом вероятность того, что случайная точка попадет левее , не может уменьшиться; следовательно, функция распределения с возрастанием убывать не может.

    Чтобы убедиться в том, что , будем неограниченно перемещать точку влево по оси абсцисс. При этом попадание случайной точки левее в пределе становится невозможным событием; естественно полагать, что вероятность этого события стремится к нулю, т.е. .

    Аналогичным образом, неограниченно перемещая точку вправо, убеждаемся, что , так как событие становится в пределе достоверным.

    График функции распределения в общем случае представляет собой график неубывающей функции (рис. 5.2.2), значения которой начинаются от 0 и доходят до 1, причем в отдельных точках функция может иметь скачки (разрывы).

    Зная ряд распределения прерывной случайной величины, можно легко построить функцию распределения этой величины. Действительно,

    ,

    где неравенство под знаком суммы указывает, что суммирование распространяется на все те значения , которые меньше .

    Когда текущая переменная проходит через какое-нибудь из возможных значений прерывной величины , функция распределения меняется скачкообразно, причем величина скачка равна вероятности этого значения.

    Пример 1. Производится один опыт, в котором может появиться или не появиться событие . Вероятность события равна 0,3. Случайная величина – число появлений события в опыте (характеристическая случайная величина события ). Построить её функцию распределения.

    Решение. Ряд распределения величины имеет вид:

    Построим функцию распределения величины :

    График функции распределения представлен на рис. 5.2.3. В точках разрыва функция принимает значения, отмеченные на чертеже точками (функция непрерывна слева).

    Пример 2. В условиях предыдущего примера производится 4 независимых опыта. Построить функцию распределения числа появлений события .

    Решение. Обозначим – число появлений события в четырех опытах. Эта величина имеет ряд распределения

    Построим функцию распределения случайной величины :

    3) при ;

    На практике обычно функция распределения непрерывной случайной величины представляет собой функцию, непрерывную во всех точках, как это показано на рис. 5.2.6. Однако можно построить примеры случайных величин, возможные значения которых непрерывно заполняют некоторый промежуток, но для которых функция распределения не везде является непрерывной, а в отдельных точках терпит разрыв (рис. 5.2.7).

    Такие случайные величины называются смешанными. В качестве примера смешанной величины можно привести площадь разрушений, наносимых цели бомбой, радиус разрушительного действия которой равен R (рис. 5.2.8).

    Значения этой случайной величины непрерывно заполняют промежуток от 0 до , осуществляющиеся при положениях бомбы типа I и II, обладают определенной конечной вероятностью, и этим значениям соответствуют скачки функции распределения, тогда как в промежуточных значениях (положение типа III) функция распределения непрерывна. Другой пример смешанной случайной величины – время T безотказной работы прибора, испытываемого в течение времени t. Функция распределения этой случайной величины непрерывна всюду, кроме точки t.