Законы распространения звуковых волн. Как спастись от звука дрели, зная принцип распространения акустических волн В каком воздухе звуки быстрее распространяются

Распостранение звука в свободном пространстве

Если источник звука всенаправленный , другими словами, звуковая энергия распространяется равномерно во всех направлениях, как например, звук от самолета в воздушном пространстве, то распределение звукового давления зависит только от расстояния и уменьшается на 6 дБ с каждым удвоением расстояния от источника звука.


Если же источник звука направленный , как, например, рупор, то уровень звукового давления зависит как от расстояния, так и от угла восприятия относительно оси излучения звука.

Взаимодействие звука с препятствием

Звуковые (слышимые) волны, встречая на своём пути препятствие, частично поглощаются им, частично отражаются от него, то есть переизлучаются препятствием обратно в помещение и частично проходят через него насквозь.

Сразу следует отметить, что процентное соотношение этих процессов будет различным для звуковых волн разной длины, что обусловлено особенностями поведения ВЧ, СЧ и НЧ волн. Помимо этого немаловажную роль играют характеристики самого препятствия такие, как его толщина, плотность материала из которого оно изготовлено, а также свойства поверхности (гладкая/рельефная, плотная/рыхлая).


Распостранение звука в замкнутом пространстве

Распространение звука в замкнутом пространстве (в условиях помещения) кардинальным образом отличается от условий его распространения в свободном пространстве, так, как звуковая волна встречает на своём пути множество преград (стены, потолок, пол, мебель, предметы интерьера и т.п.).

Возникающие в результате этого многочисленные отражения основного звука взаимодействуют, как с прямым звуком, исходящим непосредственно из динамика и достигающего ушей слушателя кратчайшим путём, то есть, по прямой, так и между собой. Схематически это различие иллюстрирует следующая диаграмма:

1) Открытое пространство: прямой звук;

2) Замкнутое пространство: прямой звук + ранние отражения + реверберация.

Всем известно, что звук отражается от стен, пола и потолка, но как это происходит?

Как уже было рассмотрено выше, звуковая волна, ударяясь о преграду, частично отражается от неё, частично поглощается, а частично проходит сквозь препятствие.

Естественно, чем тверже и плотнее стена, тем большую часть акустической энергии она будет отражать назад во внутреннее пространство помещения.

Звуковые волны отражаются от препятствий остронаправленно, поэтому в местах их отражений от стен, потолка и пола, то есть, в стороне от основного источника звука появляются его дополнительные "образы" (вторичные, «мнимые» источники звука или, так называемые «фантомы». В некоторых зарубежных источниках информации их также называют «горячими областями»).

Отражения, взаимодействуя между собой и с прямым звуком, искажают его и ухудшают отчетливость звуковой картины. А теперь представьте себе, что происходит, когда многочастотный звук сразу от двух или более акустических систем отражается сразу от шести поверхностей комнаты (четырёх стен, потолка и пола), и Вы поймете, какое колоссальное влияние оказывает акустика помещения на качество звука, воспроизводящегося в нём.

Итак, в замкнутом пространстве (в условиях помещения) выделяют три источника звука:

1. Прямой звук - это звук, исходящий непосредственно из динамиков АС (акустической системы) и достигающий ушей слушателя кратчайшим путём - по прямой, то есть, не отражаясь от поверхностей стен, пола и потолка помещения (условно можно считать его оригинальным звуком, записанном на музыкальном носителе).

2. Ранние отражения (первые отражения) - это отражения основного звука от стен, пола и потолка помещения, а также от предметов интерьера, находящихся в нём, достигающие ушей слушателя самыми короткими путями, то есть, претерпевая одно единственное отражение, благодаря чему они сохраняют достаточно большую амплитуду и формируют в областях отражения на поверхностях стен, пола и потолка помещения «образы» (вторичные, виртуальные, «мнимые» источники, «фантомы») прямого звука. Именно поэтому первые отражения являются наиболее важными в общей структуре отражений и, соответственно, оказывают серьёзное влияние на качество звучания и формирование стереокартины.

3. Реверберационные отражения (поздние отражения, реверберация, эхо) . В отличие от ранних отражений, они являются результатом многократных переотражений основного звука от поверхностей стен, пола и потолка помещения. Они достигают ушей слушателя сложными, длинными путями и поэтому имеют низкую амплитуду.

Под основным звуком подразумевается звук, исходящий непосредственно из динамика, но, в отличие от прямого звука, имеет круговую направленность.


Чем же отличаются ранние и поздние отражения?

Чтобы ответить на данный вопрос, необходимо ознакомиться с некоторыми субъективными особенностями человеческого звуковосприятия, связанными с временной характеристикой звука.

Это - так называемый эффект Хааса (Haas effect) , суть которого состоит в том, что, если звук прибывает от нескольких разноудаленных источников, то наша система ухо/мозг идентифицирует (воспринимает) только тот звук, который пришел раньше.

Если разница во времени прибытия нескольких звуковых сигналов составляет до 50 мс , то ранее прибывший звук доминирует над пришедшим позже, даже в случае, если последний на 10 дБ громче (т.е. громче в 3 раза!!!).

Таким образом, все отражения, достигающие ушей слушателя в течение первых 50 мс вслед за прямым звуком, воспринимаются человеческим ухом слитно с прямым сигналом, то есть, как один общий сигнал.

С одной стороны, это приводит к улучшению восприятия речи и субъективному увеличению её громкости, однако, в случае звуковоспроизведения это значительно ухудшает его качество за счёт искажения оригинальной музыкальной информации сливающимися с ней отражёнными звуковыми сигналами.

Если же отражения поступают с задержкой больше, чем 50 мс и имеют сопоставимый уровень с прямым сигналом, человеческое ухо воспринимает их как повторение прямого сигнала, то есть - в виде отдельных звуковых сигналов. В таких случаях эти отражения называют «эхом» (реверберацией) . Эхо существенно ухудшает разборчивость речи и восприятие музыкальной информации.


1) Особое практическое значение имеют ранние отражения (первые отражения) , достигающие уха слушателя во временном промежутке до 20 мс. после прямого сигнала.

Как уже говорилось, они сохраняют большую амплитуду и воспринимаются человеческим ухом слитно с прямым сигналом и, следовательно, искажают его первоначальную (оригинальную) структуру. Таким образом, первые отражения являются одним из основных врагов качественного звука .

Геометрические характеристики ранних отражений напрямую зависят от формы помещения, местоположения источника звука (в нашем случае это АС) и слушателя в нём, являясь уникальными для каждой конкретной точки данного помещения.

Амплитудные же характеристики первых отражений зависят от:

Расстояния между источником звука и отражающей поверхностью;

Расстояния от ушей слушателя до отражающей поверхности;

От акустических свойств самой отражающей поверхности.

Таким образом, акустическая характеристика каждой точки внутреннего пространства помещения, главным образом, определяется сочетанием характеристик прямого звука и ранних отражений, приходящих в данную точку.


2) Реверберация (поздние отражения, эхо).

При воспроизведении звука в помещении мы слышим не только прямой звук от источника и ранние отражения, но и более слабые (тихие) отражённые сигналы, являющиеся результатом многократных длительных переотражений основного звука от стен, пола и потолка помещения. Естественно, что эти звуковые сигналы достигают ушей слушателя с большим опозданием относительно момента прибытия прямого звука и первых отражений. Субъективно это воспринимается в
виде эха.

Таким образом, эффект, при котором затухание звука происходит не сразу, а постепенно, за счет многочисленных его переотражений от стен, пола и потолка помещения, называется реверберацией .

Спектральный состав отраженных сигналов в больших и малых помещениях отличается, так как реверберация несёт в себе информацию о размерах помещения. Помимо этого спектр реверберационных сигналов также содержит информацию о свойствах материалов, из которых изготовлены отражающие поверхности.

Например, реверберация с высоким уровнем высокочастотных составляющих, ассоциируется с комнатой, имеющей твердые стены, которые хорошо отражают высокие частоты. Если же звук реверберации глухой, то слушатель приходит к выводу, что стены комнаты покрыты коврами или драпировками, поглощающими высокие частоты.

Также следует отметить, что спектр реверберационных сигналов позволяет определить расстояние до источника звука.

Наша система ухо/мозг, автоматически оценивая соотношение между уровнями прямого звука и реверберации, самостоятельно делает вывод о том, находится ли источник звука близко (слабая реверберация) или далеко (сильная реверберация).

Кроме того, орган слуха человека устроен таким образом, что качество звуковосприятия зависит не только от количественного соотношения между прямым звуком и реверберацией, но также и от времени запаздывания реверберационного сигнала по отношению к моменту восприятия прямого звука.

Время реверберации представляет собой промежуток времени, в течение которого звуковая волна, многократно переотражаясь эхом по комнате, постепенно затухает. Этот параметр является одним из главных критериев акустической характеристики помещения.

Этот параметр характеризует размеры помещения: в малых помещениях за единицу времени происходит большее количество переотражений, что, в отличие от ситуации в больших комнатах, ведёт к быстрому ослаблению и последующему затуханию реверберации. А также и свойства его отражающих поверхностей: твёрдые глянцевые поверхности, в отличие от рельефных и мягких, хорошо отражают звук, практически не ослабляя его, что в свою очередь, естественно, продлевает время реверберации.

Для обозначения данного параметра было принято сокращение RT60 , то есть время (в секундах), за которое уровень звукового давления (SPL) в помещении снижается на 60 дБ, после того, как источник звука прекратит излучение.

Многократное эхо субъективно воспринимается как гулкость помещения . Чем меньше затухание, тем больше время реверберации и, соответственно, тем сильнее гулкость.

Как уже отмечалось, время реверберации определяется не только размерами помещения, но и отражающей способностью его стен, пола и потолка. Вам приходилось замечать, как непривычен звук в пустой комнате, подготовленной для ремонта, или в громадном ангаре, где имеет место сильная реверберация?

В связи с вышесказанным, целесообразно рассмотреть ещё одну категорию, а именно, радиус гулкости . Что это такое?

Речь идёт о соотношении уровней прямого и отражённого звука. В общем, чем ближе находится слушатель к источнику звука, тем громче прямой звук и, соответственно, тише - отражённый. По мере удаления от источника звука прямой звук ослабевает, а отражённый, наоборот, усиливается.

Логически следуя данному принципу, можно вполне справедливо предположить, что на некотором определённом расстоянии от источника звука прямой и отражённый звук будут восприниматься слушателем с одинаковой громкостью. Так вот окружность, с радиусом, соответствующим радиусу гулкости, и является границей между двумя областями: внутренней с преобладанием прямого звука и наружную, где доминирует отражённый звук.

Особенности поведения звуковых волн разной длины в условиях замкнутого пространства

Очевидно, что поведение звука в музыкальной студии подчиняется законам его распространения в замкнутом пространстве. Рассмотрим этот процесс более детально.

Поведение звуковых волн в замкнутом пространстве зависит от их длины и, соответственно, от частоты их колебаний, варьирующих в пределах от 17 метров (20 Гц - в начале слышимого басового диапазона) до 17 миллиметров (20 КГц - в конце слышимого высокочастотного диапазона).

Упрощенно поведение звуковых волн внутри помещения, в зависимости от их длины, можно представить в виде двух независимых моделей.

Одна - для НЧ выглядит как чисто волновой процесс - интерференция (сложение) всех источников НЧ (как баса от динамиков, так и низкочастотных отражений от стен, пола и потолка), приводящий к образованию трёхмерной картинки для каждой частоты подобно горному рельефу с чередующимися пиками и провалами громкости.

Вторая - для ВЧ, подобна излучению света с известными законами преломления, отражения и дифракции. Она использует наглядные методы геометрической оптики, поскольку в этих областях действуют аналогичные правила. Например, часть энергии звуковой волны, достигшей твердой поверхности, отражается ею под углом, равном углу падения.

Общую картину дополняет смешение этих двух процессов для СЧ.

Средне- и высокочастотные волны (волны малой длины).

Как уже говорилось, поведение звуковых волн ВЧ диапазона в общих чертах подчиняется законам распространения света. Это напрямую относится к волнам ВЧ диапазона и более или менее справедливо по отношению к ВСЧ поддиапазону.

Первой особенностью звуковых волн данного диапазона является их выраженная направленность , то есть изменение (усиление или ослабление) восприятия уровня ВЧ даже при незначительном отклонении от оси их излучения. Проще говоря, высокие частоты распространяются в направлении слушателя подобно лучу прожектора.

Направленность растёт с увеличением частоты сигнала, достигая максимума на самых высоких частотах. Именно направленность определяет основную значимость ВЧ волн в формировании стереокартины.

Второй характерной особенностью ВЧ, является способность к многократному отражению от твёрдых поверхностей, подобно рекошетящей пуле или бильярдному шару, что, в свою очередь, обуславливает их лёгкую рассеиваимость (диффузию).

Третья особенность - лёгкая поглощаемость даже тонкими мягкими поверхностями, такими как, непример, шторы.

Именно благодаря направленности и способности к отражению ВЧ, как отмечалось выше, принимают активное участие в формировании реверберационной картины.

Низкочастотные или басовые волны (волны большой длины).

Итак, поведение НЧ в условиях замкнутого пространства выглядит как чисто волновой процесс, в основе которого лежит интерференция, то есть, процесс сложения (наложения) звуковых волн, исходящих абсолютно от всех НЧ источников, находящихся в помещении, а также множества НЧ-отражений от стен, пола и потолка данного помещения.

Это обусловлено тем, что в отличии от СЧ и ВЧ волн, являющихся направленными, басовые волны равномерно распространяются во всех направлениях подобно сферам, расходящимся от излучающего центра. Таким образом, НЧ звуковые волны являются всенаправленными , именно поэтому, с закрытыми глазами невозможно определить местоположение вуфера.

Это свойство НЧ волн объясняет неспособность участия их в формировании стереокартины.

Помимо этого, благодаря большой длине волны и высокой энергии, НЧ волны способны не только огибать препятствие, но и, частично отражаясь, «проходить» насквозь даже через бетонные стены (это как раз тот случай, когда Ваши дальние соседи по «многоэтажке» слышат низкочастотное «гудение», во время прослушивания Вами музыки).

Таким образом, в отличии от ВЧ, которые легко отражаются от твёрдых поверхностей, басовые волны отражаются гораздо хуже, частично поглощаясь и частично проходя сквозь препятствие, причём с понижением частоты они всё больше утрачивают способность к отражению и предпочитают «идти напролом».

А ещё НЧ волны «умеют» «вытекать» из помещения через открытые оконные и дверные проёмы, а также легко проникать через стекло, как будто его вообще нет.

Учитывая все вышеперечисленные моменты, а также принимая во внимание тот факт, что длины НЧ волн соизмеримы с линейными размерами комнаты (длиной, шириной и высотой), становится понятным, почему на поведение басовых волн основное влияние оказывают именно параметры помещения.

Если длина волны звукового сигнала в два раза больше одного из линейных размеров комнаты, то на её частоте между данной парой стен возникает самое грозное и трудноподавляемое акустическое явление, буквально, «убивающее» звук, - резонанс воздушного объёма .

Субъективно это выражается в усилении сигнала этой конкретной частоты по отношению к уровню остальных частот и появлению гулкости звучания.

Низкочастотные резонансы и стоячие волны возникают между двумя параллельными поверхностями (например, между фронтальной и тыловой стенами или между боковыми стенами, или между полом и потолком) при возбуждении в данном помещении звуковой волны с соответствующей частотой.

Причём абсолютно неважно, что возбудит эту волну: воспроизведение музыки, игра на музыкальном инструменте, тембр голоса при разговоре, звуки коммуникаций или проходящего мимо транспорта, работа электробытовых приборов и т.д.).

Низкочастотные звуковые волны распространяются всенаправленно («... мы не можем локализовать басы, ниже 80 Гц...» - Anthony Grimani) и они обладают огромной энергией. Самые низкие из них - басовые частоты, практически не отражаясь, способны проходить через любые препятствия.

По мере повышения частоты их способность к отражению возрастает, а проникающая способность снижается.

«Считается, что звук распространяется прямолинейно, как любые волны. Но это справедливо лишь для лишенного препятствий широкого пространства. В реальности движение звуковых волн неизмеримо сложнее. Они сталкиваются с препятствиями и друг с другом, и порой распространяются, образуя вихри, по неописуемым траекториям.

На мой взгляд, тем, кто занимается аудиотехникой, необходимо обладать пространственным воображением, чтобы ясно представлять визуальные образы звуковых волн и их поведение, которое невозможно объяснить, опираясь только на теорию электричества.

Похоже, по сей день, огромное количество факторов, влияющих на звуковоспроизведение, остаются неизученными, бросая вызов всем накопленным знаниям и опыту звукоинженеров. Чем больше я размышляю над этим, тем отчетливее понимаю, что мир звука намного глубже, чем мы можем себе представить.»

Если звуковая волна не встречает препятствий на своём пути, она распространяется равномерно по всем направлениям. Но и не всякое препятствие становится преградой для неё.

Встретив препятствие на своём пути, звук может огибать его, отражаться, преломляться или поглощаться.

Дифракция звука

Мы можем разговаривать с человеком, стоящим за углом здания, за деревом или за забором, хотя и не видим его. Мы слышим его, потому что звук способен огибать эти предметы и приникать в область, находящуюся за ними.

Способность волны огибать препятствие называется дифракцией .

Дифракция возможна, когда длина звуковой волны превышает размер препятствия. Звуковые волны низкой частоты имеют довольно большую длину. Например, при частоте 100 Гц она равна 3,37 м. С уменьшением частоты длина становится ещё больше. Поэтому звуковая волна с лёгкостью огибает объекты, соизмеримые с ней. Деревья в парке совершенно не мешают нам слышать звук, потому что диаметры их стволов значительно меньше длины звуковой волны.

Благодаря дифракции, звуковые волны проникают через щели и отверстия в препятствии и распространяются за ними.

Расположим на пути звуковой волны плоский экран с отверстием.

В случае, когда длина звуковой волны ƛ намного превышает диаметр отверстия D , или эти величины примерно равны, то позади отверстия звук достигнет всех точек области, которая находится за экраном (область звуковой тени). Фронт выходящей волны будет выглядеть как полусфера.

Если же ƛ лишь немного меньше диаметра щели, то основная часть волны распространяется прямо, а небольшая часть незначительно расходится в стороны. А в случае, когда ƛ намного меньше D , вся волна пойдёт в прямом направлении.

Отражение звука

В случае попадания звуковой волны на границу раздела двух сред, возможны разные варианты её дальнейшего распространения. Звук может отразиться от поверхности раздела, может перейти в другую среду без изменения направления, а может преломиться, то есть перейти, изменив своё направление.

Предположим, на пути звуковой волны появилось препятствие, размер которого намного больше длины волны, например, отвесная скала. Как поведёт себя звук? Так как обогнуть это препятствие он не может, то он отразится от него. За препятствием находится зона акустической тени .

Отражённый от препятствия звук называется эхом .

Характер отражения звуковой волны может быть разным. Он зависит от формы отражающей поверхности.

Отражением называют изменение направления звуковой волны на границе раздела двух разных сред. При отражении волна возвращается в среду, из которой она пришла.

Если поверхность плоская, звук отражается от неё подобно тому, как отражается луч света в зеркале.

Отражённые от вогнутой поверхности звуковые лучи фокусируются в одной точке.

Выпуклая поверхность звук рассеивает.

Эффект рассеивания дают выпуклые колонны, крупные лепные украшения, люстры и т.д.

Звук не переходит из одной среды в другую, а отражается от неё, если плотности сред значительно отличаются. Так, звук, появившийся в воде, не переходит в воздух. Отражаясь от границы раздела, он остаётся в воде. Человек, стоящий на берегу реки, не услышит этот звук. Это объясняется большой разницей волновых сопротивлений воды и воздуха. В акустике волновое сопротивление равно произведению плотности среды на скорость звука в ней. Так как волновое сопротивление газов значительно меньше волновых сопротивлений жидкостей и твёрдых тел, то попадая на границу воздуха и воды, звуковая волна отражается.

Рыбы в воде не слышат звук, появляющийся над поверхностью воды, но хорошо различают звук, источником которого является тело, вибрирующее в воде.

Преломление звука

Изменение направления распространения звука называется преломлением . Это явление возникает, когда звук переходит из одной среды в другую, и скорости его распространения в этих средах различны.

Отношение синуса угла падения к синусу угла отражения равно отношению скоростей распространения звука в средах.

где i – угол падения,

r – угол отражения,

v 1 – скорость распространения звука в первой среде,

v 2 – скорость распространения звука во второй среде,

n – показатель преломления.

Преломление звука называют рефракцией .

Если звуковая волна падает не перпендикулярно поверхности, а под углом, отличным от 90 о, то преломлённая волна отклонится от направления падающей волны.

Рефракция звука может наблюдаться не только на границе раздела сред. Звуковые волны могут менять своё направление в неоднородной среде – атмосфере, океане.

В атмосфере причиной рефракции служат изменения температуры воздуха, скорость и направление перемещения воздушных масс. А в океане она появляется из-за неоднородности свойств воды – разного гидростатического давления на разных глубинах, разной температуры и разной солёности.

Поглощение звука

При встрече звуковой волны с поверхностью, часть её энергии поглощается. А какое количество энергии может поглотить среда, можно определить, зная коэффициент поглощения звука. Этот коэффициент показывает, какую часть энергии звуковых колебаний поглощает 1 м 2 препятствия. Он имеет значение от 0 до 1.

Единицу измерения звукопоглощения называют сэбин . Своё название она получила по имени американского физика Уоллеса Клемента Сэбина, основателя архитектурной акустики. 1 сэбин – это энергия, которую поглощает 1 м 2 поверхности, коэффициент поглощения которой равен 1. То есть, такая поверхность должна поглощать абсолютно всю энергию звуковой волны.

Реверберация

Уоллес Сэбин

Свойство материалов поглощать звук широко используют в архитектуре. Занимаясь исследованием акустики Лекционного зала, части построенного Fogg Museum, Уоллес Клемент Сэбин пришёл к выводу, что существует зависимость между размерами зала, акустическими условиями, типом и площадью звукопоглощающих материалов и временем реверберации .

Реверберацией называют процесс отражения звуковой волны от препятствий и её постепенное затухание после выключения источника звука. В закрытом помещении звук может многократно отражаться от стен и предметов. В результате возникают различные эхосигналы, каждый из которых звучит как бы обособленно. Этот эффект называют эффектом реверберации .

Самой важной характеристикой помещения является время реверберации , которое ввёл и вычислил Сэбин.

где V – объём помещения,

А – общее звукопоглощение.

где a i – коэффициент звукопоглощения материала,

S i - площадь каждой поверхности.

Если время реверберации велико, звуки словно "бродят" по залу. Они накладываются друг на друга, заглушают основной источник звука, и зал становится гулким. При маленьком времени реверберации стены быстро поглощают звуки, и они становятся глухими. Поэтому для каждого помещения должен быть свой точный расчёт.

По результатам своих вычислений Сэбин расположил звукопоглощающие материалы таким образом, что уменьшился «эффект эха». А Симфонический Зал Бостона, при создании которого он был акустическим консультантом, до сих пор считается одним из лучших залов в мире.

Под звуком понимают упругие волны, лежащие в пределах слышимости человеческого уха, в интервале колебаний от 16 гц до 20 кгц. Колебания с частотой ниже 16 гц называются инфра­звуком, свыше 20 кгц -ультразвуком.

Вода по сравнению с воздухом обладает большей плотностью и меньшей сжимаемостью. В связи с этим скорость звука в воде в четыре с половиной раза больше, чем в воздухе, и составляет 1440 м/сек. Частота колебаний звука (ню) связана с длиной вол­ны (лямбда) соотношением: c = лямбда-ню. Звук распространяется в воде без дисперсии. Скорость звука в воде изменяется в зависимости от двух параметров: плотности и температуры. Изменение темпера­туры на 1° влечет за собой соответственное изменение скорости звука на 3,58 м в секунду. Если проследить за скоростью рас­пространения звука от поверхности до дна, окажется, что сна­чала из-за понижения температуры она быстро убывает, достиг­нув на некоторой глубине минимума, а затем, с глубиной, начи­нает быстро возрастать за счет увеличения давления воды, которое, как известно, возрастает приблизительно на 1 атм на каждые 10 м глубины.

Начиная с глубины приблизительно 1200 м , где температура воды практически остается постоянной, изменение скорости зву­ка происходит за счет изменения давления. «На глубине, равной приблизительно 1200 м (для Атлантики), имеется минимум значения скорости звука; на больших глубинах благодаря уве­личению давления скорость звука опять увеличивается. Так как звуковые лучи всегда изгибаются к участкам среды, где их скорость наименьшая, то они концентрируются в слое с мини­мальной скоростью звука» (Красильников, 1954). Этот слой, открытый советскими физиками Л. Д. Розенбергом и Л.М. Бре­ховских, носит название «подводного звукового канала». Звук, попавший в звуковой канал, может распространяться без ослабления на огромные расстояния. Эту особенность необходи­мо иметь в виду при рассмотрении акустической сигнализации глубоководных рыб.

Поглощение звука в воде в 1000 раз меньше, чем в воздухе. Источник звука в воздухе мощностью в 100 квт в воде слы­шен на расстоянии до 15 км ; в воде источник звука в 1 квт слышен на расстоянии 30-40 км. Звуки различных частот по­глощаются неодинаково: сильнее всего поглощаются звуки высо­ких частот и мгнее всего - низкие звуки. Малое поглощение звука в воде позволило использовать его для гидролокации и сигнализации. Водные пространства наполнены большим коли­чеством различных звуков. Звуки водоемов Мирового океана, как показал американский гидроакустик Венц (Wenz, 1962), возникают в связи со следующими факторами: приливами и от­ливами, течениями, ветром, землетрясениями и цунами, инду­стриальной деятельностью человека и биологической жизнью. Характер шумов, создаваемых различными факторами, отли­чается как набором звуковых частот, так и их интенсивностью. На рис. 2 показана зависимость спектра и уровня давления зву­ков Мирового океана от вызывающих их факторов.

В различных участках Мирового океана состав шумов опре­деляют различные компоненты. Большое влияние при этом на состав звуков оказывают дно и берега.

Таким образом, состав и интенсивность шумов в различных участках Мирового океана исключительно разнообразны. Суще­ствуют эмпирические формулы, показывающие зависимость ин­тенсивности шумов моря от интенсивности вызывающих их факторов. Однако в практических целях шумы океана измеря­ются обычно эмпирически.

Следует отметить, что среди звуков Мирового океана наи­большей интенсивностью отличаются индустриальные звуки, со­здаваемые человеком: шум кораблей, тралов и т. д. По данным Шейна (1964), они по интенсивности в 10-100 раз превышают иные звуки Мирового океана. Однако, как видно из рис. 2, их спектральный состав несколько отличается от спектрального состава звуков, вызываемых другими факторами.

При распространении в воде звуковые волны могут отра­жаться, преломляться, поглощаться, испытывать диффракцию и интерференцию.

Встречая на своем пути препятствие, звуковые волны могут отразиться от него в случае, когда длина их волны (лямбда) меньше размера препятствия, или обогнуть (диффрагировать) его в слу­чае, когда их длина волны больше препятствия. В этом случае можно слышать то, что происходит за препятствием, не видя источника непосредственно. Падая на препятствие, звуковые волны в одном случае могут отразиться, в другом - проникнуть в него (поглотиться им). Величина энергии отраженной волны зависит от того, как сильно разнятся между собой так называ­емые акустические сопротивления сред «р1с1» и «р2с2», на гра­ницу раздела которых падают звуковые волны. Под акустиче­ским сопротивлением среды подразумевается произведение плотности данной среды р на скорость распространения звука с в ней. Чем больше разница акустических сопротивлений сред, тем большая часть энергии отразится от раздела двух сред, и наоборот. В случае, например, падения звука из воздуха, рс ко­торого 41, в воду, рс которой 150 000, он отражается согласно формуле:

В связи с указанным звук гораздо лучше проникает в твер­дое тело из воды, чем из воздуха. Из воздуха в воду звук хоро­шо проникает через кусты или камыши, выступающие над водной поверхностью.

В связи с отражением звука от препятствий и его волновой природой может происходить сложение или вычитание амплитуд звуковых давлений одинаковых частот, пришедших в данную точку пространства. Важным следствием такого сложения (ин­терференции) является образование стоячих волн при отраже­нии. Если, например, привести в колебание камертон, прибли­жая и удаляя его от стены, можно слышать из-за появления пуч­ностей и узлов в звуковом поле усиление и ослабление громко­сти звука. Обычно стоячие волны образуются в закрытых емко­стях: в аквариумах, бассейнах и пр. при относительно длительном по времени звучании источника.

В реальных условиях моря или другого естественного водо­ема при распространении звука наблюдаются многочисленные сложные явления, возникающие в связи с неоднородностью водной среды. Огромное влияние на распространение звука в естественных водоемах оказывают дно и границы раздела (вода - воздух), температурная и солевая неоднородность, гид­ростатическое давление, пузырьки воздуха и планктонные орга­низмы. Поверхности раздела вода - воздух и дно, а также не­однородность воды приводят к явлениям рефракции (искрив­ление звуковых лучей), или реверберации (многократное отра­жение звуковых лучей).

Пузырьки воды, планктон и другие взвеси способствуют по­глощению звука в воде. Количественная оценка этих многочис­ленных факторов в настоящее время еще не разработана. Учи­тывать же их при постановке акустических опытов необходимо.

Рассмотрим теперь явления, происходящие в воде при излу­чении в ней звука.

Представим себе звуковой источник как пульсирующую сфе­ру в бесконечном пространстве. Акустическая энергия, излучае­мая таким источником, ослабляется обратно пропорционально квадрату расстояния от его центра.

Энергия образующихся звуковых волн может быть охарак­теризована тремя параметрами: скоростью, давлением и смеще­нием колеблющихся частиц воды. Два последних параметра представляют особый интерес при рассмотрении слуховых спо­собностей рыб, поэтому на них остановимся более подробно.

По Гаррису и Бергельджику (Harris a. Berglijk, 1962), рас­пространение волн давления и эффекта смещения по-разному представлены в ближнем (на расстоянии менее одной длины волны звука) и дальнем (на расстоянии, более одной длины вол­ны звука) акустическом поле.

В дальнем акустическом поле давление ослабляется обратно пропорционально расстоянию от источника звука. При этом в дальнем акустическом поле амплитуды смещения прямо пропор­циональны амплитудам давления и связаны между собой фор­мулой:

где Р - акустическое давление в дин/см 2 ;

d - величина смещения частиц в см.

В ближнем акустическом поле зависимость между амплиту­дами давления и смещения иная:

где Р -акустическое давление в дин/см 2 ;

d - величины смещения частиц воды в см;

f - частота колебаний в гц;

рс - акустическое сопротивление воды, равное 150 000 г/см 2 сек 2 ;

лямбда - длина волны звука в м ; r - расстояние от центра пульсирующей сферы;

i = SQR i

Из формулы видно, что амплитуда смещения в ближнем аку­стическом поле зависит от длины волны, звука и расстояния от источника звука.

На расстояниях, меньших, чем длина волны рассматриваемо­го звука, амплитуда смещения убывает обратно пропорциональ­но квадрату расстояния:

где А - радиус пульсирующей сферы;

Д - увеличение радиуса сферы за счет пульсации; r - расстояние от центра сферы.

Рыбы, как будет показано ниже, обладают двумя разными типами приемников. Одни из них воспринимают давление, а другие - смещение частиц воды. Приведенные уравненияимеют поэтому большое значение для правильной оценки ответных реакций рыб на подводные источники звука.

В связи с излучением звука отметим еще два явления, свя­занные с излучателями: явление резонанса и направленности излучателей.

Излучение звука телом происходит в связи с его колебания­ми. Каждое тело имеет собственную частоту колебаний, опреде­ляемую размером тела и его упругими свойствами. Если такое тело приводится в колебание, частота которого совпадает с его собственной частотой, наступает явление значительного увели­чения амплитуды колебания - резонанс. Применение понятия о резонансе позволяет охарактеризовать некоторые акустические свойства излучателей и приемников рыб. Излучение звука в воду может быть направленным и ненаправленным. В первом случае звуковая энергия распространяется преимущественно в определенном направлении. График, выражающий простран­ственное распределение звуковой энергии данного источника звука, называют диаграммой его направленности. Направлен­ность излучения наблюдается в случае, когда диаметр излучате­ля значительно больше длины волны излучаемого звука.

В случае ненаправленного излучения звуковая энергия рас­ходится во все стороны равномерно. Такое явление происходит в случае, когда длина волны излучаемого звука превосходит диаметр излучателя лямбда>2А. Второй случай наиболее характерен для подводных излучателей низкой частоты. Обычно длины волн низкочастотных звуков бывают значительно больше размеров применяемых подводных излучателей. Такое же явление харак­терно и для излучателей рыб. В этих случаях диаграммы на­правленности у излучателей отсутствуют. В настоящей главе были отмечены лишь некоторые общие физические свойства зву­ка в водной среде в связи с биоакустикой рыб. Некоторые более частные вопросы акустики будут рассмотрены в соответствую­щих разделах книги.

В заключение рассмотрим применяемые различными автора­ми системы измерений звука. Звук может быть выражен его ин­тенсивностью, давлением или уровнем давления.

Интенсивность звука в абсолютных единицах измеряется или числом эрг/сек-см 2 , или вт/см 2 . При этом 1 эрг/сек=10 -7 вт.

Давление звука измеряется в барах.

Между интенсивностью и давлением звука существует зави­симость:

пользуясь которой можно переводить эти величины одну в дру­гую.

Не менее часто, особенно при рассмотрении слуха рыб, в связи с огромным диапазоном пороговых величин звуковое дав­ление выражают в относительных логарифмических единицах децибеллах, дб. Если звуковое давление одного звука Р , а друго­го Р о, то считают, что первый звук громче второго на k дб и вы­числяют его по формуле:

Большинство исследователей при этом за нулевой отсчет давле­ния звука Р о принимают пороговую величину слуха человека, равную 0,0002 бара для частоты 1000 гц.

Достоинством такой системы является возможность непо­средственного сопоставления слуха человека и рыб, недостат­ком - сложность сопоставления полученных результатов по зву­чанию и слуху рыб.

Фактические величины звукового давления, создаваемого ры­бами, на четыре - шесть порядков выше принятого нулевого уровня (0,0002 бара), а пороговые уровни слуха различных рыб лежат как выше, так и ниже условного нулевого отсчета.

Поэтому для удобства сопоставления звуков и слуха рыб американские авторы (Tavolga a. Wodinsky, 1963, и др.) поль­зуются другой системой отсчета.

За нулевой уровень отсчета принято давление звука в 1 бар, который на 74 дб выше ранее принятого.

Ниже приводится примерное соотношение обеих систем.

Фактические величины по американской системе отсчета в тексте помечены звездочкой.

Специфическое ощущение, воспринимаемое нами как звук, является результатом воздействия на слуховой аппарат человека колебательного движения упругой среды - чаще всего воздуха. Колебания среды возбуждаются источником звука и, распространяясь в среде, доходят до приемного аппарата - нашего уха. Таким образом, бесконечное разнообразие слышимых нами звуков вызывается колебательными процессами, различающимися друг от друга частотой и амплитудой. Не следует смешивать две стороны одного и того же явления: звук как физический процесс представляет собой частный случай колебательного движения; в качестве же психо-физиологического явления звук есть некоторое специфическое ощущение, мехайизм возникновения которого изучен в настоящее время довольно подробно.

Говоря о физической стороне явления, мы характеризуем звук его интенсивностью (силой), его составом и частотой связанных с ним колебательных процессов; имея же в виду звуковые ощущения, мы говорим о громкости, о тембре, о высоте звука.

В твердых телах звук может распространяться как в виде продольных, так и в виде поперечных колебаний. Поскольку жидкости и газы не имеют упругости сдвига, очевидно, что в газообразной и в жидкой средах звук может распространяться только в виде продольных колебаний. В газах и в жидкостях звуковые волны представляют собой чередующиеся сгущения и разрежения среды, удаляющиеся от источника звука с определенной характерной для каждой среды скоростью. Поверхностью звуковой волны является геометрическое место частиц среды, имеющих одинаковую фазу колебаний. Поверхности звуковых волн можно провести, например, так, чтобы между поверхностями соседних волн заключались слой сгущения и слой разрежения. Направление, перпендикулярное к поверхности волны, называют лучом.

Звуковые волны в газообразной среде могут быть сфотографированы. Для этой цели за источником звука помещают

фотографическую пластинку, на которую спереди направляют пучок света от электрической искры так, чтобы эти лучи от мгновенной вспышки света падали на фотопластинку, пройдя через воздух, окружающий источник звука. На рис. 158-160 приведены полученные по указанному способу фотографии звуковых волн. Источник звука был отделен от фотопластинки небольшим экранчиком на подставке.

На рис. 158, а видно, что звуковая волна только что вышла из-за экрана; на рис. 158, б та же волна заснята вторично спустя несколько тысячных долей секунды. Поверхностью волны в данном случае является сфера. На фотографии изображение волны получается в виде окружности, радиус которой со временем увеличивается.

Рис. 158. Фотография звуковой волны в два момента времени (а и б). Отражение звуковой волны (в).

На рис. 158, в приведена фотография звуковой сферической волны, отраженной от плоской стенки. Здесь следует обратить внимание на то, что отраженная часть волны как бы исходит из точки, находящейся за отражающей поверхностью на таком же расстоянии от отражающей поверхности, как и источник звука. Общеизвестно, что явлением отражения звуковых волн объясняется эхо.

На рис. 159 показано изменение волновой поверхности при прохождении звуковой волны через линзообразный мешочек, наполненный водородом. Это изменение поверхности звуковой волны является следствием преломления (рефракции) звуковых лучей: у поверхности раздела двух сред, где скорость волн различна, направление распространения волны изменяется.

Рис. 160 воспроизводит фотографию звуковых волн, на пути распространения которых поставлен экран с четырьмя щелями. Проходя через щели, волны огибают экран. Это явление огибания волнами встреченных препятствий называют дифракцией.

Законы распространения, отражения, преломления и дифракции звуковых волн могут быть выведены из принципа Гюйгенса, согласно которому каждая приведенная в колебание частица

среды может рассматриваться как новый центр (источник) волн; интерференция всех этих волн дает наблюдаемую в действительности волну (способы применения принципа Гюйгенса будут пояснены в третьем томе на примере световых волн).

Звуковые волны несут с собой некоторое количество движения и вследствие этого оказывают давление на встречаемые ими препятствия.

Рис. 159. Преломление звуковой волны.

Рис. 160. Дифракция звуковых волн.

Для пояснения этого факта обратимся к рис. 161. На этом рисунке пунктиром изображена синусоида смещений частиц среды в некоторый момент времени при распространении в среде продольных волн. Скорости этих частиц в рассматриваемый момент времени изобразятся косинусоидой, или, что то же, синусоидой, опережающей синусоиду смещений на четверть периода (на рис. 161 - сплошная линия). Нетрудно сообразить, что сгущения среды будут наблюдаться там, где в данный момент смещение частиц равно нулю или близко к нулю и где скорость направлена в сторону распространения волн. Наоборот, разрежения среды будут наблюдаться там, где смещение частиц тоже равно нулю или близко к нулю, но где скорость частиц направлена в сторону, противоположную распространению волн. Итак, в сгущениях частицы движутся вперед, в разрежениях - назад. Но в

Рис. 161. В сгущениях проходящей звуковой волны частицы движутся вперед,

сгущенных слоях находится большее число частиц, чем в разрежениях. Таким образом, в любой момент времени в бегущих продольных звуковых волнах число частиц, движущихся вперед, несколько превышает число частиц, движущихся назад. Вследствие этого звуковая волна несет с собой некоторое количество движения, что и проявляется в давлении, которое звуковые волны оказывают на встречаемые ими препятствия.

Экспериментально давление звука было исследовано Рэлеем и Петром Николаевичем Лебедевым.

Теоретически скорость звука определяется формулой Лапласа [§ 65, формула (5)]:

где К - модуль всесторонней упругости (когда сжатие производится без притока и отдачи тепла), плотность.

Если сжатие тела производить, поддерживая температуру тела постоянной, то для модуля упругости получаются величины меньшие, чем в том случае, когда сжатие производится без притока и отдачи тепла. Эти два значения модуля всесторонней упругости, как доказывается в термодинамике, относятся так, как теплоемкость тела при постоянном давлении к теплоемкости тела при постоянном объеме.

Для газов (не слишком сжатых) изотермический модуль всесторонней упругости равен просто давлению газа Если, не изменяя температуры газа, мы сожмем газ (увеличим его плотность) в раз, то и давление газа возрастет в раз. Следовательно, по формуле Лапласа получается, что скорость звука в газе не зависит от плотности газа.

Из газовых законов и формулы Лапласа можно вывести (§ 134), что скорость звука в газах пропорциональна корню квадратному из абсолютной температуры газа:

где ускорение силы тяжести, отношение темплоемкостей универсальная газовая постоянная.

При С скорость звука в сухом воздухе равна при средних температурах и средней влажности скорость звука В воздухе считают равной Скорость звука в водороде при равен

В воде скорость звука составляет в стекле в железе

Следует заметить, что ударные звуковые волны, вызываемые выстрелом или взрывом, в начале своего пути имеют скорость,

значительно превосходящую нормальную скорость звука в данной среде. Ударная звуковая волна в воздухе, вызванная сильным взрывом, может иметь вблизи источника звука скорость, в несколько раз превосходящую нормальную скорость звука в воздухе, но уже на расстоянии десятков метров от места взрыва скорость распространения волны уменьшается до нормальной величины.

Как уже упоминалось в § 65, звуковые волны разной длины имеют практически одинаковую скорость. Исключение составляют те области частот, для которых характерно особенно быстрое затухание упругих волн при их распространении в рассматриваемой среде. Обычно эти частоты лежат далеко за пределами слышимости (для газов при атмосферном давлении - это частоты порядка колебаний в секунду). Теоретический анализ показывает, что дисперсия и поглощение звуковых волн связаны с тем, что для перераспределения энергии между поступательным и колебательным движениями молекул требуется некоторое, хотя и малое, время. Это приводит к тому, что длинные волны (волны звукового диапазона) движутся несколько медленнее, чем очень короткие «неслышимые» волны. Так, в парах углекислоты при и атмосферном давлении звук имеет скорость тогда как весьма короткие, «неслышимые», волны распространяются со скоростью

Звуковая волна, распространяясь в среде, может иметь различную форму, зависящую от размеров и формы источника звука. В случаях, технически наиболее интересных, источник звука (излучатель) представляет собой некоторую колеблющуюся поверхность, - таковы, например, мембрана телефона или диффузор громкоговорителя. Если такой источник звука излучает звуковые волны в открытое пространство, то форма волны существенным образом зависит от относительных размеров излучателя; излучатель, размеры которого велики сравнительно с длиной звуковой волны, излучает звуковую энергию в одном только направлении, именно в направлении своего колебательного движения. Напротив, излучатель малого сравнительно с длиной волны размера излучает звуковую энергию по всем направлениям. Форма волнового фронта в том и другом случаях будет, очевидно, различной.

Рассмотрим сначала первый случай. Представим себе жесткую плоскую поверхность достаточно большого (сравнительно с длиной волны) размера, совершающую колебательное движений в направлении своей нормали. Двигаясь вперед, такая поверхность создает перед собой сгущение, которое благодаря упругости среды будет распространяться в направлении смещения излучателя). Двигаясь обратно, излучатель создает за собой разрежение, которое будет перемещаться в среде вслед за начальным сгущением. Недлительном колебании излучателя мы будем наблюдать по обе стороны от него звуковую волну, характеризующуюся тем, что все частицы среды, находящиеся на равном расстоянии от излучающей поверхности средней плотности среды и скорости звука с:

Произведение средней плотности среды на скорость звука, называют акустическим сопротивлением среды.

Акустические сопротивления при 20° С

(см. скан)

Рассмотрим теперь случай сферических волн. Когда размеры излучающей поверхности становятся малыми сравнительно с длиной волны, волновой фронт заметно искривляется. Это происходит потому, что энергия колебаний распространяется по всем направлениям от излучателя.

Явление можно лучше всего понять на следующем простом примере. Представим себе, что на поверхность воды упало длинное бревно. Возникшие благодаря этому волны идут параллельными рядами в обе стороны от бревна. Иначе обстоит дело в том случае, когда в воду брошен небольшой камень, - при этом волны распространяются концентрическими кругами. Бревно велико сравнительно

с длиной волны на поверхности воды; идущие от него параллельные ряды волн представляют собой наглядную модель плоских волн. Камень же имеет небольшие размеры; расходящиеся от места его падения круги дают нам модель сферических волн. При распространении сферической волны поверхность волнового фронта возрастает пропорционально квадрату его радиуса. При постоянной мощности источника звука энергия, протекающая через каждый квадратный сантиметр сферической поверхности радиуса обратно пропорциональна Так как энергия колебаний пропорциональна квадрату амплитуды, то ясно, что амплитуда колебаний в сферической волне должна убывать как величина, обратная первой степени расстояния от источника звука. Уравнение сферической волны имеет, следовательно, такой вид:


К основным законам распространения звука относятся законы его отражения и преломления на границах различных сред, а также дифракция звука и его рассеяние при наличии препятствий и неоднородностей в среде и на границах раздела сред.

На дальность распространения звука оказывает влияние фактор поглощения звука, то есть необратимый переход энергии звуковой волны в другие виды энергии, в частности, в тепло. Важным фактором является также направленность излучения и скорость распространения звука, которая зависит от среды и её специфического состояния.

От источника звука акустические волны распространяются во все стороны. Если звуковая волна проходит через сравнительно небольшое отверстие, то она распространяется во все стороны, а не идёт направленным пучком. Например, уличные звуки, проникающие через открытую форточку в комнату, слышны во всех её точках, а не только против окна.

Характер распространения звуковых волн у препятствия зависит от соотношения между размерами препятствия и длиной волны. Если размеры препятствия малы по сравнению с длиной волны, то волна обтекает это препятствие, распространяясь во все стороны.

Звуковые волны, проникая из одной среды в другую, отклоняются от своего первоначального направления, то есть преломляются. Угол преломления может быть больше или меньше угла падения. Это зависит от того, из какой среды в какую проникает звук. Если скорость звука во второй среде больше, то угол преломления будет больше угла падения, и наоборот.

Встречая на своём пути препятствие, звуковые волны отражаются от него по строго определённому правилу – угол отражения равен углу падения – с этим связано понятие эха. Если звук отражается от нескольких поверхностей, находящихся на разных расстояниях, возникает многократное эхо.

Звук распространяется в виде расходящейся сферической волны, которая заполняет всё больший объём. С увеличением расстояния, колебания частиц среды ослабевают, и звук рассеивается. Известно, что для увеличения дальности передачи звук необходимо концентрировать в заданном направлении. Когда мы хотим, например, чтобы нас услышали, мы прикладываем ладони ко рту или пользуемся рупором.

Большое влияние на дальность распространения звука оказывает дифракция, то есть искривление звуковых лучей. Чем разнороднее среда, тем больше искривляется звуковой луч и, соответственно, тем меньше дальность распространения звука.

Распространение звука

Звуковые волны могут распространяться в воздухе, газах, жидкостях и твердых телах. В безвоздушном пространстве волны не возникают. В этом легко убедиться на простом опыте. Если электрический звонок поместить под воздухонепроницаемый колпак, из которого откачен воздух, мы никакого звука не услышим. Но как только колпак наполнится воздухом, возникает звук.

Скорость распространения колебательных движений от частицы к частице зависит от среды. В далекие времена воины прикладывали ухо к земле и таким образом обнаруживали конницу противника значительно раньше, чем она появлялась в поле зрения. А известный ученый Леонардо да Винчи в 15 веке писал: «Если ты, будучи на море, опустишь в воду отверстие трубы, а другой конец ее приложишь к уху, то услышишь шум кораблей, очень отдаленных от тебя».

Скорость распространения звука в воздухе впервые была измерена в 17 веке Миланской академией наук. На одном из холмов установили пушку, а на другом расположился наблюдательный пункт. Время засекли и в момент выстрела (по вспышке) и в момент приема звука. По расстоянию между наблюдательным пунктом и пушкой и времени происхождения сигнала скорость распространения звука рассчитать уже не составляло труда. Она оказалась равной 330 метров в секунду.

В воде скорость распространения звука впервые была измерена в 1827 году на Женевском озере. Две лодки находились одна от другой на расстоянии 13847 метров. На первой под днищем подвесили колокол, а со второй опустили в воду простейший гидрофон (рупор). На первой лодке одновременно с ударом в колокол подожгли порох, на второй наблюдатель в момент вспышки запустил секундомер и стал, ждать прихода звукового сигнала от колокола. Выяснилось, что в воде звук распространяется в 4 с лишним раза быстрее, чем в воздухе, т.е. со скоростью 1450 метров в секунду.

Скорость распространения звука

Чем выше упругость среды, тем больше скорость: в каучуке50, в воздухе330, в воде1450, а в стали - 5000 метров в секунду. Если бы мы, находились в Москве, могли крикнуть так громко, чтобы звук долетел до Петербурга, то нас услышали бы там только через полчаса, а если бы звук на это же расстояние распространялся в стали, то он был бы принят через две минуты.

На скорость распространения звука оказывает влияние состояние одной и той же среды. Когда мы говорим, что в воде звук распространяется со скоростью 1450 метров в секунду, это вовсе не означает, что в любой воде и при любых условиях. С повышением температуры и солености воды, а так же с увеличением глубины, а следовательно, и гидростатического давления скорость звука возрастает. Или возьмем сталь. Здесь тоже скорость звука зависит как от температуры, так и от качественного состава стали: чем больше в ней углерода, тем она тверже, тем звук в ней распространяется быстрее.

Встречая на своем пути препятствие, звуковые волны отражаются от него по строго определенному правилу: угол отражения равен углу падения. Звуковые волны, идущие из воздуха, почти полностью отразятся от поверхности воды вверх, а звуковые волны, идущие от источника, находящегося в воде, отражаются от нее вниз.

Звуковые волны, проникая из одной среды в другую, отклоняются от своего первоначального положения, т.е. преломляются. Угол преломления может быть больше или меньше угла падения. Это зависит от того, из какой среды, в какую проникает звук. Если скорость звука во второй среде больше чем в первой, то угол преломления будет больше угла падения и наоборот.

В воздухе звуковые волны распространяются в виде расходящийся сферической волны, которая заполняет все больший объем, так как колебания частиц, вызванные источниками звука, передаются массе воздуха. Однако с увеличением расстояния колебания частиц ослабевают. Известно, что для увеличения дальности передачи, звук необходимо концентрировать в заданном направлении. Когда мы хотим, чтобы нас лучше было слышно, мы прикладываем ладони ко рту или пользуемся рупором. В этом случае звук будет ослабляться меньше, а звуковые волны - распространяются дальше.

При увеличении толщины стенки звуколокация на низких средних частотах увеличивается, но «коварный» резонанс совпадения, вызывающий удушение звуколокации, начинает проявляться, более низких частотах и захватывает более широкую их область.